Pregled bibliografske jedinice broj: 1140436
Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach
Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach // 26th International Conference on Fracture and Structural Integrity
Torino, Italija, 2021. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 1140436 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimation of materials' parameters of strain-life
fatigue behavior using empirical and artificial
neural networks based approach
Autori
Marohnić, Tea ; Basan, Robert
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Skup
26th International Conference on Fracture and Structural Integrity
Mjesto i datum
Torino, Italija, 26.05.2021. - 31.05.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
estimation methods ; monotonic properties ; strain-life fatigue behavior ; artificial neural networks
Sažetak
Estimation of fatigue lives and material behavior, along with determination of corresponding material parameters, is needed in early design stages that precede experimental testing. Since the experimental characterization is the most accurate, but also time and resource consuming, a number of methods for estimation of fatigue parameters from easily obtainable monotonic properties exist in the literature. Most commonly used methodologies for estimation of strain life parameters nowadays include widely used empirical estimation methods and machine-learning based methods, mainly artificial neural networks (ANNs). The latter, when correctly developed, facilitate capturing complex relationships among input and target variables. ANNs were developed for estimation of strain-life parameters of unalloyed, low-alloy and high-alloy steels on the basis of monotonic properties which were previously determined as relevant by performing a detailed statistical analysis. Previous statistical analyses indicated that different monotonic properties are statistically significant for estimation of fatigue parameters of unalloyed, low- and high-alloy steel subgroups. Results were evaluated on an independent set of data, both for aforementioned groups of steels and for individual materials. Evaluations showed that when developed correctly, ANNs are a promising method for estimation of materials’ strain-life parameters and behavior of particular material. Should more data be included in developing of ANNs for the given purpose, a fast, robust and efficient solution can be obtained and used for the estimation of strain- life parameters and behavior of metallic materials.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-5764 - Razvoj modela za procjenu ponašanja materijala temeljenih na strojnom učenju (MADEIRA) (Basan, Robert, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-116 - Istraživanje i razvoj prediktivnih modela ponašanja konstrukcijskih materijala temeljenih na metodama strojnog učenja (Basan, Robert, NadSve - UNIRI PROJEKTI) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka