Pregled bibliografske jedinice broj: 1139850
Non-Debye relaxations: The characteristic exponent in the excess wings model
Non-Debye relaxations: The characteristic exponent in the excess wings model // Communications in Nonlinear Science and Numerical Simulation, 103 (2021), 106006, 11 doi:10.1016/j.cnsns.2021.106006 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1139850 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Non-Debye relaxations: The characteristic exponent in the excess wings model
(Non-Debye relaxations: The characteristic exponent in
the excess wings model)
Autori
Górska, Katarzyna ; Horzela, Andrzej ; Poganj, Tibor
Izvornik
Communications in Nonlinear Science and Numerical Simulation (1007-5704) 103
(2021);
106006, 11
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
excess wings relaxation ; time smeared evolution equations ; memory functions ; characteristic exponents
Sažetak
The characteristic (Laplace or Lévy) exponents uniquely characterize infinitely divisible probability distributions. Although of purely mathematical origin they appear to be uniquely associated with the memory functions present in evolution equations which govern the course of such physical phenomena like non-Debye relaxations or anomalous diffusion. Commonly accepted procedure to mimic memory effects is to make basic equations time smeared, i.e., nonlocal in time. This is modeled either through the convolution of memory functions with those describing relaxation/diffusion or, alternatively, through the time smearing of time derivatives. Intuitive expectations say that such introduced time smearings should be physically equivalent. This leads to the conclusion that both kinds of so far introduced memory functions form a “twin” structure familiar to mathematicians for a long time and known as the Sonine pair. As an illustration of the proposed scheme we consider the excess wings model of non-Debye relaxations, determine its evolution equations and discuss properties of the solutions.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Fizika, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
NadSve-Sveučilište u Rijeci-uniri-pr-prirod-19-16 - Stohastičke metode u matematičkoj analizi (Krizmanić, Danijel, NadSve - UNIRI-plus projekti 2018) ( CroRIS)
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts