Pregled bibliografske jedinice broj: 1139751
Recognition of Rare Low-Moral Actions Using Depth Data
Recognition of Rare Low-Moral Actions Using Depth Data // Sensors, 20 (2020), 10; 2758, 16 doi:10.3390/s20102758 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1139751 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Recognition of Rare Low-Moral Actions Using Depth Data
Autori
Du, Kanghui ; Kaczmarek, Thomas ; Brščić, Dražen ; Kanda, Takayuki
Izvornik
Sensors (1424-8220) 20
(2020), 10;
2758, 16
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
human action recognition ; depth maps ; skeleton ; low-moral actions ; 3D CNN
Sažetak
Detecting and recognizing low-moral actions in public spaces is important. But low-moral actions are rare, so in order to learn to recognize a new low-moral action in general we need to rely on a limited number of samples. In order to study the recognition of actions from a comparatively small dataset, in this work we introduced a new dataset of human actions consisting in large part of low-moral behaviors. In addition, we used this dataset to test the performance of a number of classifiers, which used either depth data or extracted skeletons. The results show that both depth data and skeleton based classifiers were able to achieve similar classification accuracy on this dataset (Top-1: around 55%, Top-5: around 90%). Also, using transfer learning in both cases improved the performance.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE