Pregled bibliografske jedinice broj: 1139677
Reinforcement Learning Based Variable Speed Limit Control for Mixed Traffic Flows
Reinforcement Learning Based Variable Speed Limit Control for Mixed Traffic Flows // Proceedings of 2021 29th Mediterranean Conference on Control and Automation (MED)
Apulija, Italija: Institute of Electrical and Electronics Engineers (IEEE), 2021. str. 560-565 doi:10.1109/MED51440.2021.9480215 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1139677 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Reinforcement Learning Based Variable Speed Limit Control for Mixed Traffic Flows
Autori
Vrbanić, Filip ; Ivanjko, Edouard ; Mandžuka, Sadko ; Miletić, Mladen
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 2021 29th Mediterranean Conference on Control and Automation (MED)
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2021, 560-565
ISBN
978-1-6654-2258-1
Skup
29th Mediterranean Conference on Control and Automation (MED 2021)
Mjesto i datum
Apulija, Italija, 22.06.2021. - 25.06.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Intelligent Transportation Systems, Mixed Traffic Flows, Variable Speed Limit Control, Artificial Intelligence, Urban motorways
Sažetak
Today’s urban mobility requires results for resolving increasingly complex demands on the traffic management system. Hence, the main problem is to achieve a satisfactory level of service for urban motorways as part of the urban traffic network. In addition, with the introduction of Connected and Autonomous Vehicles (CAVs), additional challenges for modern control systems arise. This study focuses on the Variable Speed Limit (VSL) based on Q-Learning with CAVs as actuators in the control loop. The Q-Learning algorithm is combined with the two-step Temporal Difference target to increase the effectiveness of the algorithm for learning the VSL control policy for mixed traffic flows. Different CAV penetration rates are analyzed, and the results are compared with a rule-based VSL and the no control case. The obtained results show that Q-Learning based VSL can learn the control policy and improve the Total Travel Time and Mean Travel Time for different CAV penetration rates. The results are most apparent in the case of low CAV penetration rates. There is also an indication that the increase of the CAV penetration rate reduces the need for separate VSL control.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-5042 - Razvoj sustava zasnovanih na učećim agentima za unaprijeđenje upravljanja prometom u gradovima (DLASIUT) (Ivanjko, Edouard, HRZZ - 2020-02) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet prometnih znanosti, Zagreb
Profili:
Sadko Mandžuka
(autor)
Edouard Ivanjko
(autor)
Filip Vrbanić
(autor)
Mladen Miletić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus