Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1139511

Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator


Baressi Šegota, Sandi; Anđelić, Nikola; Mrzljak, Vedran; Lorencin, Ivan; Kuric, Ivan; Car, Zlatan
Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator // International Journal of Advanced Robotic Systems, 2021 (2021), July-August; 1-11 doi:10.1177/1729881420925283 (međunarodna recenzija, članak, ostalo)


CROSBI ID: 1139511 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator

Autori
Baressi Šegota, Sandi ; Anđelić, Nikola ; Mrzljak, Vedran ; Lorencin, Ivan ; Kuric, Ivan ; Car, Zlatan

Izvornik
International Journal of Advanced Robotic Systems (1729-8814) 2021 (2021), July-August; 1-11

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo

Ključne riječi
artificial intelligence, artificial neural network, inverse kinematics, machine learning, multilayer perceptron, roboticmanipulator
(aartificial intelligence, artificial neural network, inverse kinematics, machine learning, multilayer perceptron, roboticmanipulator)

Sažetak
Inverse kinematic equations allow the determination of the joint angles necessary for the robotic manipulator to place atool into a predefined position. Determining this equation is vital but a complex work. In this article, an artificial neuralnetwork, more specifically, a feed-forward type, multilayer perceptron (MLP), is trained, so that it could be used tocalculate the inverse kinematics for a robotic manipulator. First, direct kinematics of a robotic manipulator are determinedusing Denavit–Hartenberg method and a dataset of 15, 000 points is generated using the calculated homogenous trans-formation matrices. Following that, multiple MLPs are trained with 10, 240 different hyperparameter combinations to findthe best. Each trained MLP is evaluated using theR2and mean absolute error metrics and the architectures of the MLPsthat achieved the best results are presented. Results show a successful regression for the first five joints (percentage errorbeing less than 0.1%) but a comparatively poor regression for the final joint due to the configuration of the roboticmanipulator.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Strojarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)

--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi journals.sagepub.com

Citiraj ovu publikaciju:

Baressi Šegota, Sandi; Anđelić, Nikola; Mrzljak, Vedran; Lorencin, Ivan; Kuric, Ivan; Car, Zlatan
Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator // International Journal of Advanced Robotic Systems, 2021 (2021), July-August; 1-11 doi:10.1177/1729881420925283 (međunarodna recenzija, članak, ostalo)
Baressi Šegota, S., Anđelić, N., Mrzljak, V., Lorencin, I., Kuric, I. & Car, Z. (2021) Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator. International Journal of Advanced Robotic Systems, 2021 (July-August), 1-11 doi:10.1177/1729881420925283.
@article{article, author = {Baressi \v{S}egota, Sandi and An\djeli\'{c}, Nikola and Mrzljak, Vedran and Lorencin, Ivan and Kuric, Ivan and Car, Zlatan}, year = {2021}, pages = {1-11}, DOI = {10.1177/1729881420925283}, keywords = {artificial intelligence, artificial neural network, inverse kinematics, machine learning, multilayer perceptron, roboticmanipulator}, journal = {International Journal of Advanced Robotic Systems}, doi = {10.1177/1729881420925283}, volume = {2021}, number = {July-August}, issn = {1729-8814}, title = {Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator}, keyword = {artificial intelligence, artificial neural network, inverse kinematics, machine learning, multilayer perceptron, roboticmanipulator} }
@article{article, author = {Baressi \v{S}egota, Sandi and An\djeli\'{c}, Nikola and Mrzljak, Vedran and Lorencin, Ivan and Kuric, Ivan and Car, Zlatan}, year = {2021}, pages = {1-11}, DOI = {10.1177/1729881420925283}, keywords = {aartificial intelligence, artificial neural network, inverse kinematics, machine learning, multilayer perceptron, roboticmanipulator}, journal = {International Journal of Advanced Robotic Systems}, doi = {10.1177/1729881420925283}, volume = {2021}, number = {July-August}, issn = {1729-8814}, title = {Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator}, keyword = {aartificial intelligence, artificial neural network, inverse kinematics, machine learning, multilayer perceptron, roboticmanipulator} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font