Pregled bibliografske jedinice broj: 1139339
Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables
Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables // Scientific reports, 8 (2018), 5530, 9 doi:10.1038/s41598-018-23584-z (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1139339 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Antidepressant drug-specific prediction of
depression treatment outcomes from genetic and
clinical variables
Autori
Iniesta, Raquel ; Hodgson, Karen ; Stahl, Daniel ; Malki, Karim ; Maier, Wolfgang ; Rietschel, Marcella ; Mors, Ole ; Hauser, Joanna ; Henigsberg, Neven ; Dernovsek, Mojca Zvezdana ; Souery, Daniel ; Dobson, Richard ; Aitchison, Katherine J. ; Farmer, Anne ; McGuffin, Peter ; Lewis, Cathryn M. ; Uher, Rudolf
Izvornik
Scientific reports (2045-2322) 8
(2018);
5530, 9
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
antidepressants ; depression, treatment outcomes ; genetic variables ; clinical variables
Sažetak
Individuals with depression differ substantially in their response to treatment with antidepressants. Specific predictors explain only a small proportion of these differences. To meaningfully predict who will respond to which antidepressant, it may be necessary to combine multiple biomarkers and clinical variables. Using statistical learning on common genetic variants and clinical information in a training sample of 280 individuals randomly allocated to 12-week treatment with antidepressants escitalopram or nortriptyline, we derived models to predict remission with each antidepressant drug. We tested the reproducibility of each prediction in a validation set of 150 participants not used in model derivation. An elastic net logistic model based on eleven genetic and six clinical variables predicted remission with escitalopram in the validation dataset with area under the curve 0.77 (95%CI ; 0.66-0.88 ; p = 0.004), explaining approximately 30% of variance in who achieves remission. A model derived from 20 genetic variables predicted remission with nortriptyline in the validation dataset with an area under the curve 0.77 (95%CI ; 0.65-0.90 ; p < 0.001), explaining approximately 36% of variance in who achieves remission. The predictive models were antidepressant drug-specific. Validated drug- specific predictions suggest that a relatively small number of genetic and clinical variables can help select treatment between escitalopram and nortriptyline.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne medicinske znanosti, Kliničke medicinske znanosti
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE