Pregled bibliografske jedinice broj: 1138956
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning // Materials, 14 (2021), 15; 4346, 25 doi:10.3390/ma14154346 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1138956 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Modeling of Compressive Strength of Self-Compacting
Rubberized Concrete Using Machine Learning
Autori
Kovačević, Miljan ; Lozančić, Silva ; Nyarko, Emmanuel Karlo ; Hadzima-Nyarko, Marijana
Izvornik
Materials (1996-1944) 14
(2021), 15;
4346, 25
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
self-compacting rubberized concrete ; compressive strength ; machine learning ; artificial neural networks ; regression tree ensembles ; support vector regression ; Gaussian process regression
Sažetak
This paper gives a comprehensive overview of the state-of-the-art machine learning methods that can be used for estimating self-compacting rubberized concrete (SCRC) compressive strength, including multilayered perceptron artificial neural network (MLP-ANN), ensembles of MLP-ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) and Gaussian process regression (GPR). As a basis for the development of the forecast model, a database was obtained from an experimental study containing a total of 166 samples of SCRC. Ensembles of MLP-ANNs showed the best performance in forecasting with a mean absolute error (MAE) of 2.81 MPa and Pearson’s linear correlation coefficient (R) of 0.96. The significantly simpler GPR model had almost the same accuracy criterion values as the most accurate model ; furthermore, feature reduction is easy to combine with GPR using automatic relevance determination (ARD), leading to models with better performance and lower complexity.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Građevinski i arhitektonski fakultet Osijek,
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus