Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1138956

Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning


Kovačević, Miljan; Lozančić, Silva; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning // Materials, 14 (2021), 15; 4346, 25 doi:10.3390/ma14154346 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1138956 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning

Autori
Kovačević, Miljan ; Lozančić, Silva ; Nyarko, Emmanuel Karlo ; Hadzima-Nyarko, Marijana

Izvornik
Materials (1996-1944) 14 (2021), 15; 4346, 25

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
self-compacting rubberized concrete ; compressive strength ; machine learning ; artificial neural networks ; regression tree ensembles ; support vector regression ; Gaussian process regression

Sažetak
This paper gives a comprehensive overview of the state-of-the-art machine learning methods that can be used for estimating self-compacting rubberized concrete (SCRC) compressive strength, including multilayered perceptron artificial neural network (MLP-ANN), ensembles of MLP-ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) and Gaussian process regression (GPR). As a basis for the development of the forecast model, a database was obtained from an experimental study containing a total of 166 samples of SCRC. Ensembles of MLP-ANNs showed the best performance in forecasting with a mean absolute error (MAE) of 2.81 MPa and Pearson’s linear correlation coefficient (R) of 0.96. The significantly simpler GPR model had almost the same accuracy criterion values as the most accurate model ; furthermore, feature reduction is easy to combine with GPR using automatic relevance determination (ARD), leading to models with better performance and lower complexity.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo, Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove:
Građevinski i arhitektonski fakultet Osijek,
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Kovačević, Miljan; Lozančić, Silva; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning // Materials, 14 (2021), 15; 4346, 25 doi:10.3390/ma14154346 (međunarodna recenzija, članak, znanstveni)
Kovačević, M., Lozančić, S., Nyarko, E. & Hadzima-Nyarko, M. (2021) Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning. Materials, 14 (15), 4346, 25 doi:10.3390/ma14154346.
@article{article, author = {Kova\v{c}evi\'{c}, Miljan and Lozan\v{c}i\'{c}, Silva and Nyarko, Emmanuel Karlo and Hadzima-Nyarko, Marijana}, year = {2021}, pages = {25}, DOI = {10.3390/ma14154346}, chapter = {4346}, keywords = {self-compacting rubberized concrete, compressive strength, machine learning, artificial neural networks, regression tree ensembles, support vector regression, Gaussian process regression}, journal = {Materials}, doi = {10.3390/ma14154346}, volume = {14}, number = {15}, issn = {1996-1944}, title = {Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning}, keyword = {self-compacting rubberized concrete, compressive strength, machine learning, artificial neural networks, regression tree ensembles, support vector regression, Gaussian process regression}, chapternumber = {4346} }
@article{article, author = {Kova\v{c}evi\'{c}, Miljan and Lozan\v{c}i\'{c}, Silva and Nyarko, Emmanuel Karlo and Hadzima-Nyarko, Marijana}, year = {2021}, pages = {25}, DOI = {10.3390/ma14154346}, chapter = {4346}, keywords = {self-compacting rubberized concrete, compressive strength, machine learning, artificial neural networks, regression tree ensembles, support vector regression, Gaussian process regression}, journal = {Materials}, doi = {10.3390/ma14154346}, volume = {14}, number = {15}, issn = {1996-1944}, title = {Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning}, keyword = {self-compacting rubberized concrete, compressive strength, machine learning, artificial neural networks, regression tree ensembles, support vector regression, Gaussian process regression}, chapternumber = {4346} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font