Pregled bibliografske jedinice broj: 1137952
Rapid Plant Development Modelling System for Predictive Agriculture based on Artificial Intelligence
Rapid Plant Development Modelling System for Predictive Agriculture based on Artificial Intelligence // Proceedings of the 16th International Conference on Telecommunications
Zagreb, 2021. str. 173-180 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1137952 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Rapid Plant Development Modelling System for
Predictive Agriculture based on Artificial
Intelligence
Autori
Lešić, Vinko ; Novak, Hrvoje ; Ratković, Marko ; Zovko, Monika ; Lemić, Darija ; Skendžić, Sandra ; Tabak, Jelena ; Polić, Marsela ; Orsag, Matko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 16th International Conference on Telecommunications
/ - Zagreb, 2021, 173-180
ISBN
978-953-184-272-3
Skup
16th International Conference on Telecommunications (ConTEL 2021)
Mjesto i datum
Zagreb, Hrvatska, 30.06.2021. - 02.07.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Plant growth encapsulated design, Rapid plant development modelling, Big data, Artificial intelligence, Predictive agriculture
Sažetak
Actual and upcoming climate changes will evidently have the largest impact on agriculture crops cultivation in terms of reduced harvest, increased costs, and necessary deviation from the traditional farming. The aggravating factor for the successful applications of precision and predictive agriculture is the lack of big data, due to slow, year-round cycles of crops, as a prerequisite for further analysis and modelling. The goal of the system we propose is to enable rapid collection of data with respect to various climate conditions, which are artificially created and permuted in the encapsulated design, and correlated with plant development identifiers. The design is equipped with a large number of sensors and connected to the central database in a computer cloud. Such accumulated data is exploited to develop mathematical models of wheat in different growth stages by applying the concepts of artificial intelligence and utilize them for prediction of crop development and harvest. The paper presents a work in progress where the developed models will be publicly and interactively used through a portal for prediction of plant development in real and hypothetical climate conditions, with accumulated and archived feedback from farmers as additional data for tuning of the developed models.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Poljoprivreda (agronomija)
Napomena
U postupku obrade za IEEEXplore bazu
POVEZANOST RADA
Projekti:
EK-EFRR-KK.05.1.1.02.0031 - Napredna i prediktivna poljoprivreda za otpornost klimatskim promjenama (AgroSPARC) (Lešić, Vinko; Zovko, Monika; Lemić, Darija; Orsag, Matko, EK - KK.05.1.1.02) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Agronomski fakultet, Zagreb
Profili:
Jelena Vuletić
(autor)
Darija Lemić
(autor)
Marsela Polić
(autor)
Hrvoje Novak
(autor)
Monika Zovko
(autor)
Sandra Skendžić
(autor)
Matko Orsag
(autor)
Vinko Lešić
(autor)