Pregled bibliografske jedinice broj: 1137888
Intelligent Automation System for Vessels Recognition: Comparison of SIFT and SURF Methods
Intelligent Automation System for Vessels Recognition: Comparison of SIFT and SURF Methods // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 28 (2021), 4; 1221-1226 doi:10.17559/TV-20200522115821 (međunarodna recenzija, članak, ostalo)
CROSBI ID: 1137888 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Intelligent Automation System for Vessels
Recognition: Comparison of SIFT and SURF Methods
Autori
Musulin, Jelena ; Lorencin, Ivan ; Meštrić, Hrvoje ; Car, Zlatan
Izvornik
Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku (1330-3651) 28
(2021), 4;
1221-1226
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
MLP ; Satellite Images ; SIFT ; SURF ; Vessels Classification
Sažetak
Nowadays, with the rise of drone and satellite technology, there is a possibility for its application in sea and coastal surveillance. An advantage of this type of application is the automated recognition of marine objects, among which the most important are vessels. This paper presents the principle of vessel recognition based on the extraction of satellite image features of the vessel and the application of a multilayer perceptron (MLP). Dataset used in this research contains the total of 2750 images, where 2112 images are used as training set while the remaining 638 images are used for testing purposes. The SIFT and SURF algorithms were used to extract image features, which were later used as the input vector for MLP.The best results are achieved if a model with four hidden layers is used. These layers are constructed with 32, 128, 32, 128 neurons with ReLU activation function, respectively. Regarding the application of feature extraction, it can be observed that better results are achieved if the SIFT algorithm is used. The ROC AUC value achieved with the combination of SIFT and MLP reaches 0.99.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Strojarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Hrvatsko katoličko sveučilište, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus