Pregled bibliografske jedinice broj: 1137291
Boosting-based DDoS Detection in Internet of Things Systems
Boosting-based DDoS Detection in Internet of Things Systems // IEEE Internet of Things, 9 (2022), 3; 2109-2123 doi:10.1109/JIOT.2021.3090909 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1137291 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Boosting-based DDoS Detection in Internet of
Things Systems
Autori
Cvitić, Ivan ; Peraković, Dragan ; Gupta, Brij B. ; Choo, Kim-Kwang Raymond
Izvornik
IEEE Internet of Things (2372-2541) 9
(2022), 3;
2109-2123
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
ensemble machine learning ; supervised learning ; IDS ; artificial intelligence ; cybersecurity ; DDoS ; IoT.
Sažetak
Distributed denial of service (DDoS) attacks remain challenging to mitigate in existing systems, including in-home networks that comprise different Internet of Things (IoT) devices. In this paper, we present a DDoS traffic detection model that uses a boosting method of logistic model trees for different IoT device classes. Specifically, a different version of the model will be generated and applied for each device class, since the characteristics of the network traffic from each device class may have subtle variation(s). As a case study, we explain how devices in a typical smart home environment can be categorized into four different classes (and in our context, Class 1 -very high level of traffic predictability, Class 2 -high level of traffic predictability, Class 3 -medium level of traffic predictability, and Class 4 -low level of traffic predictability). Findings from our evaluations show that the accuracy of our proposed approach is between 99.92% and 99.99% for these four device classes. In other words, we demonstrate that we can use device classes to help us more effectively detect DDoS traffic.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport
POVEZANOST RADA
Ustanove:
Fakultet prometnih znanosti, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus