Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1137132

Economic Policy Uncertainty Index Meets Ensemble Learning


Lolić, Ivana; Sorić, Petar; Logarušić, Marija
Economic Policy Uncertainty Index Meets Ensemble Learning // Computational Economics, 60 (2022), 1; 401-437 doi:10.1007/s10614-021-10153-2 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1137132 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Economic Policy Uncertainty Index Meets Ensemble Learning

Autori
Lolić, Ivana ; Sorić, Petar ; Logarušić, Marija

Izvornik
Computational Economics (0927-7099) 60 (2022), 1; 401-437

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Economic policy uncertainty index ; Textual analysis ; Ensemble learning ; Random forest model ; Gradient boosting

Sažetak
We utilize a battery of ensemble learning techniques [ensemble linear regression (LM), random forest], as well as two gradient boosting techniques [Gradient Boosting Decision Tree and Extreme Gradient Boosting (XGBoost)] to scrutinize the possibilities of enhancing the predictive accuracy of Economic Policy Uncertainty (EPU) index. Applied to a data-rich environment of the Newsbank media database, our LM and XGBoost assessments mostly outperform the other two ensemble learning procedures, as well as the original EPU index. Our LM and XGBoost estimates bring EPU closer to the stylized facts of uncertainty than other uncertainty estimates. LM and XGBoost indicators are more countercyclical and have more pronounced leading properties. We find that EPU is more strongly correlated to financial volatility measures than to consumers’ assessments of uncertainty. This corroborates that the media place a much higher weight on the financial sector than on the economic issues of consumers. Further on, we considerably widen the scope of search terms included in the calculation of EPU index. Using ensemble learning techniques on such a rich set of keywords, we mostly manage to outperform the standard EPU in terms of correlation with standard uncertainty proxies. We also find that the predictive accuracy of EPU index can be considerably increased using a more diversified set of uncertainty-related terms than the original EPU framework. Our estimates perform much better in a monthly setting (targeting the industrial production growth) than targeting quarterly GDP growth. This speaks in favor of uncertainty as a purely short-term phenomenon.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Projekti:
IP-2018-01-4189 - EKONOMSKI SENTIMENT: STATISTIČKI, POLITIČKI, BIHEVIORALNI I MEDIJSKI ASPEKTI NJEGOVOG UTJECAJA NA EKONOMSKU AKTIVNOST (EconSent) (Sorić, Petar, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Ekonomski fakultet, Zagreb

Profili:

Avatar Url Ivana Lolić (autor)

Avatar Url Petar Sorić (autor)

Avatar Url Marija Logarušić (autor)

Poveznice na cjeloviti tekst rada:

doi rdcu.be link.springer.com

Citiraj ovu publikaciju:

Lolić, Ivana; Sorić, Petar; Logarušić, Marija
Economic Policy Uncertainty Index Meets Ensemble Learning // Computational Economics, 60 (2022), 1; 401-437 doi:10.1007/s10614-021-10153-2 (međunarodna recenzija, članak, znanstveni)
Lolić, I., Sorić, P. & Logarušić, M. (2022) Economic Policy Uncertainty Index Meets Ensemble Learning. Computational Economics, 60 (1), 401-437 doi:10.1007/s10614-021-10153-2.
@article{article, author = {Loli\'{c}, Ivana and Sori\'{c}, Petar and Logaru\v{s}i\'{c}, Marija}, year = {2022}, pages = {401-437}, DOI = {10.1007/s10614-021-10153-2}, keywords = {Economic policy uncertainty index, Textual analysis, Ensemble learning, Random forest model, Gradient boosting}, journal = {Computational Economics}, doi = {10.1007/s10614-021-10153-2}, volume = {60}, number = {1}, issn = {0927-7099}, title = {Economic Policy Uncertainty Index Meets Ensemble Learning}, keyword = {Economic policy uncertainty index, Textual analysis, Ensemble learning, Random forest model, Gradient boosting} }
@article{article, author = {Loli\'{c}, Ivana and Sori\'{c}, Petar and Logaru\v{s}i\'{c}, Marija}, year = {2022}, pages = {401-437}, DOI = {10.1007/s10614-021-10153-2}, keywords = {Economic policy uncertainty index, Textual analysis, Ensemble learning, Random forest model, Gradient boosting}, journal = {Computational Economics}, doi = {10.1007/s10614-021-10153-2}, volume = {60}, number = {1}, issn = {0927-7099}, title = {Economic Policy Uncertainty Index Meets Ensemble Learning}, keyword = {Economic policy uncertainty index, Textual analysis, Ensemble learning, Random forest model, Gradient boosting} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font