Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1137056

Deep-Feature-Based Approach to Marine Debris Classification


Marin, Ivana; Mladenović, Saša; Gotovac, Sven; Zaharija, Goran
Deep-Feature-Based Approach to Marine Debris Classification // Applied Sciences-Basel, 11 (2021), 12; 5644, 25 doi:10.3390/app11125644 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1137056 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep-Feature-Based Approach to Marine Debris Classification

Autori
Marin, Ivana ; Mladenović, Saša ; Gotovac, Sven ; Zaharija, Goran

Izvornik
Applied Sciences-Basel (2076-3417) 11 (2021), 12; 5644, 25

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
deep learning ; marine litter classification ; feature vectors ; transfer learning ; computer vision

Sažetak
The global community has recognized an increasing amount of pollutants entering oceans and other water bodies as a severe environmental, economic, and social issue. In addition to prevention, one of the key measures in addressing marine pollution is the cleanup of debris already present in marine environments. Deployment of machine learning (ML) and deep learning (DL) techniques can automate marine waste removal, making the cleanup process more efficient. This study examines the performance of six well-known deep convolutional neural networks (CNNs), namely VGG19, InceptionV3, ResNet50, Inception-ResNetV2, DenseNet121, and MobileNetV2, utilized as feature extractors according to three different extraction schemes for the identification and classification of underwater marine debris. We compare the performance of a neural network (NN) classifier trained on top of deep CNN feature extractors when the feature extractor is (1) fixed ; (2) fine- tuned on the given task ; (3) fixed during the first phase of training and fine-tuned afterward. In general, fine-tuning resulted in better- performing models but is much more computationally expensive. The overall best NN performance showed the fine-tuned Inception-ResNetV2 feature extractor with an accuracy of 91.40% and F1-score 92.08%, followed by fine-tuned InceptionV3 extractor. Furthermore, we analyze conventional ML classifiers’ performance when trained on features extracted with deep CNNs. Finally, we show that replacing NN with a conventional ML classifier, such as support vector machine (SVM) or logistic regression (LR), can further enhance the classification performance on new data.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Sven Gotovac (autor)

Avatar Url Goran Zaharija (autor)

Avatar Url Saša Mladenović (autor)

Avatar Url Ivana Marin (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Marin, Ivana; Mladenović, Saša; Gotovac, Sven; Zaharija, Goran
Deep-Feature-Based Approach to Marine Debris Classification // Applied Sciences-Basel, 11 (2021), 12; 5644, 25 doi:10.3390/app11125644 (međunarodna recenzija, članak, znanstveni)
Marin, I., Mladenović, S., Gotovac, S. & Zaharija, G. (2021) Deep-Feature-Based Approach to Marine Debris Classification. Applied Sciences-Basel, 11 (12), 5644, 25 doi:10.3390/app11125644.
@article{article, author = {Marin, Ivana and Mladenovi\'{c}, Sa\v{s}a and Gotovac, Sven and Zaharija, Goran}, year = {2021}, pages = {25}, DOI = {10.3390/app11125644}, chapter = {5644}, keywords = {deep learning, marine litter classification, feature vectors, transfer learning, computer vision}, journal = {Applied Sciences-Basel}, doi = {10.3390/app11125644}, volume = {11}, number = {12}, issn = {2076-3417}, title = {Deep-Feature-Based Approach to Marine Debris Classification}, keyword = {deep learning, marine litter classification, feature vectors, transfer learning, computer vision}, chapternumber = {5644} }
@article{article, author = {Marin, Ivana and Mladenovi\'{c}, Sa\v{s}a and Gotovac, Sven and Zaharija, Goran}, year = {2021}, pages = {25}, DOI = {10.3390/app11125644}, chapter = {5644}, keywords = {deep learning, marine litter classification, feature vectors, transfer learning, computer vision}, journal = {Applied Sciences-Basel}, doi = {10.3390/app11125644}, volume = {11}, number = {12}, issn = {2076-3417}, title = {Deep-Feature-Based Approach to Marine Debris Classification}, keyword = {deep learning, marine litter classification, feature vectors, transfer learning, computer vision}, chapternumber = {5644} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • INSPEC
  • DOAJ
  • EBSCO
  • ProQuest


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font