Pregled bibliografske jedinice broj: 113673
On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients
On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients // Proceedings of the Conference on Applied Mathematics and Scientific Computing / Drmač, Zlatko ; Hari, Vjeran ; Sopta, Luka ; Tutek, Zvonimir ; Veselić, Krešimir (ur.).
New York (NY): Kluwer Academic Publishers ; Plenum Publishers, 2003. str. 313-322 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 113673 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients
Autori
Vrdoljak, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the Conference on Applied Mathematics and Scientific Computing
/ Drmač, Zlatko ; Hari, Vjeran ; Sopta, Luka ; Tutek, Zvonimir ; Veselić, Krešimir - New York (NY) : Kluwer Academic Publishers ; Plenum Publishers, 2003, 313-322
ISBN
0-306-47426-3
Skup
Conference on Applied Mathematics and Scientific Computing
Mjesto i datum
Brijuni, Hrvatska, 23.06.2003. - 27.06.2003
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
stationary diffusion; principal eigenvalue; H-topology; singular values
Sažetak
We consider the eigenvalue problem $$ \left\{; \begin{;array};{;l}; -\dv(A\nabla u)=\lambda\rho u\\ u\in {;\rm H};^1_0(\Omega)\\ \end{;array}; \right. $$ where $\Omega\in{;\bf R};^d$ is open and bounded, $\rho\in{;\rm L};^\infty(\Omega)$ and $A\in{;\rm L};^\infty(\Omega ; {;\rm M};_{;d\times d};)$ satisfying $$ A(x)\xi\cdot\xi\geq\alpha\xi\cdot\xi\ , \quad\rho(x)\geq c\, , \qquad \xi\in{;\bf R};^d, \, {;\rm a.e.};\ x\in\Omega\, , $$ for some $\alpha, c>0$. We show that, under appropriate conditions on smoothness of coefficients, the principal eigenvalue depends continuously on coefficients with respect to H-topology for $A$ and L$^\infty$ weak $\ast$ topology for $\rho$. An application of this result in optimal shape design problem of optimising the principal eigenvalue is presented. Moreover, in the same topology for coefficients, we obtain the continuity of corresponding singular values.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037101
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Marko Vrdoljak
(autor)