Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1136205

Machine Learning and Soil Humidity Sensing: Signal Strength Approach


Dujić Rodić, Lea; Županović, Tomislav; Perković, Toni; Šolić, Petar; Rodrigues, Joel J. P. C.
Machine Learning and Soil Humidity Sensing: Signal Strength Approach // ACM Transactions on Internet Technology, 22 (2022), 2; 39, 21 doi:10.1145/3418207 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1136205 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine Learning and Soil Humidity Sensing: Signal Strength Approach

Autori
Dujić Rodić, Lea ; Županović, Tomislav ; Perković, Toni ; Šolić, Petar ; Rodrigues, Joel J. P. C.

Izvornik
ACM Transactions on Internet Technology (1533-5399) 22 (2022), 2; 39, 21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Soil humidity ; RSSI ; LoRa ; Deep learning ; SVR ; LSTM

Sažetak
The IoT vision of ubiquitous and pervasive computing gives rise to future smart irrigation systems comprising physical and digital world. Smart irrigation ecosystem combined with Machine Learning can provide solutions that successfully solve the soil humidity sensing task in order to ensure optimal water usage. Existing solutions are based on data received from the power hungry/expensive sensors that are transmitting the sensed data over the wireless channel. Over time, the systems become difficult to maintain, especially in remote areas due to the battery replacement issues with large number of devices. Therefore, a novel solution must provide an alternative, cost and energy effective device that has unique advantage over the existing solutions. This work explores a concept of a novel, low-power, LoRa-based, cost-effective system which achieves humidity sensing using Deep learning techniques that can be employed to sense soil humidity with the high accuracy simply by measuring signal strength of the given underground beacon device.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
UIP-2017-05-4206 - Internet stvari: istraživanja i primjene (IoTRA) (Šolić, Petar, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Toni Perković (autor)

Avatar Url Lea Dujić Rodić (autor)

Avatar Url Petar Šolić (autor)

Poveznice na cjeloviti tekst rada:

doi dl.acm.org

Citiraj ovu publikaciju:

Dujić Rodić, Lea; Županović, Tomislav; Perković, Toni; Šolić, Petar; Rodrigues, Joel J. P. C.
Machine Learning and Soil Humidity Sensing: Signal Strength Approach // ACM Transactions on Internet Technology, 22 (2022), 2; 39, 21 doi:10.1145/3418207 (međunarodna recenzija, članak, znanstveni)
Dujić Rodić, L., Županović, T., Perković, T., Šolić, P. & Rodrigues, J. (2022) Machine Learning and Soil Humidity Sensing: Signal Strength Approach. ACM Transactions on Internet Technology, 22 (2), 39, 21 doi:10.1145/3418207.
@article{article, author = {Duji\'{c} Rodi\'{c}, Lea and \v{Z}upanovi\'{c}, Tomislav and Perkovi\'{c}, Toni and \v{S}oli\'{c}, Petar and Rodrigues, Joel J. P. C.}, year = {2022}, pages = {21}, DOI = {10.1145/3418207}, chapter = {39}, keywords = {Soil humidity, RSSI, LoRa, Deep learning, SVR, LSTM}, journal = {ACM Transactions on Internet Technology}, doi = {10.1145/3418207}, volume = {22}, number = {2}, issn = {1533-5399}, title = {Machine Learning and Soil Humidity Sensing: Signal Strength Approach}, keyword = {Soil humidity, RSSI, LoRa, Deep learning, SVR, LSTM}, chapternumber = {39} }
@article{article, author = {Duji\'{c} Rodi\'{c}, Lea and \v{Z}upanovi\'{c}, Tomislav and Perkovi\'{c}, Toni and \v{S}oli\'{c}, Petar and Rodrigues, Joel J. P. C.}, year = {2022}, pages = {21}, DOI = {10.1145/3418207}, chapter = {39}, keywords = {Soil humidity, RSSI, LoRa, Deep learning, SVR, LSTM}, journal = {ACM Transactions on Internet Technology}, doi = {10.1145/3418207}, volume = {22}, number = {2}, issn = {1533-5399}, title = {Machine Learning and Soil Humidity Sensing: Signal Strength Approach}, keyword = {Soil humidity, RSSI, LoRa, Deep learning, SVR, LSTM}, chapternumber = {39} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font