Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1135645

Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients


Štifanić, Daniel; Musulin, Jelena; Jurilj, Zdravko; Baressi Šegota, Sandi; Lorencin, Ivan; Anđelić, Nikola; Vlahinić, Saša; Šušteršič, Tijana; Blagojević, Anđela; Filipović, Nenad; Car, Zlatan
Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients // EAI Endorsed Transactions on Bioengineering and Bioinformatics, 21 (2021), 3; e3, 8 doi:10.4108/eai.7-7-2021.170287 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1135645 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients

Autori
Štifanić, Daniel ; Musulin, Jelena ; Jurilj, Zdravko ; Baressi Šegota, Sandi ; Lorencin, Ivan ; Anđelić, Nikola ; Vlahinić, Saša ; Šušteršič, Tijana ; Blagojević, Anđela ; Filipović, Nenad ; Car, Zlatan

Izvornik
EAI Endorsed Transactions on Bioengineering and Bioinformatics (2709-4111) 21 (2021), 3; E3, 8

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial intelligence ; COVID-19 ; DeepLabv3+ ; semantic segmentation ; X-ray images

Sažetak
INTRODUCTION: As a result of this global health crisis caused by the COVID-19 pandemic, the medical industry is searching for innovations that have the potential to automate the diagnostic process of COVID-19 and serve as an assistive tool for clinicians. OBJECTIVES: X-ray images have shown to be useful in the diagnosis of COVID-19. The goal of this research is to demonstrate an approach for automatic segmentation of lungs in chest X-ray images. METHODS: In this research DeepLabv3+ with Xception_65, MobileNetV2, and ResNet101 as backbones are used in order to perform lung segmentation. RESULTS: The proposed approach was experimented on X-ray images and has achieved an average mIOU of 0.910, F1 of 0.925, accuracy of 0.968, precision of 0.916, sensitivity of 0.935, and specificity of 0.977. CONCLUSION: Based on the obtained results, the proposed approach proved to be successful in terms of lung segmentation in chest X-ray images and has a great potential for clinical use.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Kliničke medicinske znanosti, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)



POVEZANOST RADA


Projekti:

--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi eudl.eu

Citiraj ovu publikaciju:

Štifanić, Daniel; Musulin, Jelena; Jurilj, Zdravko; Baressi Šegota, Sandi; Lorencin, Ivan; Anđelić, Nikola; Vlahinić, Saša; Šušteršič, Tijana; Blagojević, Anđela; Filipović, Nenad; Car, Zlatan
Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients // EAI Endorsed Transactions on Bioengineering and Bioinformatics, 21 (2021), 3; e3, 8 doi:10.4108/eai.7-7-2021.170287 (međunarodna recenzija, članak, znanstveni)
Štifanić, D., Musulin, J., Jurilj, Z., Baressi Šegota, S., Lorencin, I., Anđelić, N., Vlahinić, S., Šušteršič, T., Blagojević, A., Filipović, N. & Car, Z. (2021) Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients. EAI Endorsed Transactions on Bioengineering and Bioinformatics, 21 (3), e3, 8 doi:10.4108/eai.7-7-2021.170287.
@article{article, author = {\v{S}tifani\'{c}, Daniel and Musulin, Jelena and Jurilj, Zdravko and Baressi \v{S}egota, Sandi and Lorencin, Ivan and An\djeli\'{c}, Nikola and Vlahini\'{c}, Sa\v{s}a and \v{S}u\v{s}ter\v{s}i\v{c}, Tijana and Blagojevi\'{c}, An\djela and Filipovi\'{c}, Nenad and Car, Zlatan}, year = {2021}, pages = {8}, DOI = {10.4108/eai.7-7-2021.170287}, chapter = {e3}, keywords = {artificial intelligence, COVID-19, DeepLabv3+, semantic segmentation, X-ray images}, journal = {EAI Endorsed Transactions on Bioengineering and Bioinformatics}, doi = {10.4108/eai.7-7-2021.170287}, volume = {21}, number = {3}, issn = {2709-4111}, title = {Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients}, keyword = {artificial intelligence, COVID-19, DeepLabv3+, semantic segmentation, X-ray images}, chapternumber = {e3} }
@article{article, author = {\v{S}tifani\'{c}, Daniel and Musulin, Jelena and Jurilj, Zdravko and Baressi \v{S}egota, Sandi and Lorencin, Ivan and An\djeli\'{c}, Nikola and Vlahini\'{c}, Sa\v{s}a and \v{S}u\v{s}ter\v{s}i\v{c}, Tijana and Blagojevi\'{c}, An\djela and Filipovi\'{c}, Nenad and Car, Zlatan}, year = {2021}, pages = {8}, DOI = {10.4108/eai.7-7-2021.170287}, chapter = {e3}, keywords = {artificial intelligence, COVID-19, DeepLabv3+, semantic segmentation, X-ray images}, journal = {EAI Endorsed Transactions on Bioengineering and Bioinformatics}, doi = {10.4108/eai.7-7-2021.170287}, volume = {21}, number = {3}, issn = {2709-4111}, title = {Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients}, keyword = {artificial intelligence, COVID-19, DeepLabv3+, semantic segmentation, X-ray images}, chapternumber = {e3} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font