Pregled bibliografske jedinice broj: 1135645
Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients
Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients // EAI Endorsed Transactions on Bioengineering and Bioinformatics, 21 (2021), 3; e3, 8 doi:10.4108/eai.7-7-2021.170287 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1135645 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients
Autori
Štifanić, Daniel ; Musulin, Jelena ; Jurilj, Zdravko ; Baressi Šegota, Sandi ; Lorencin, Ivan ; Anđelić, Nikola ; Vlahinić, Saša ; Šušteršič, Tijana ; Blagojević, Anđela ; Filipović, Nenad ; Car, Zlatan
Izvornik
EAI Endorsed Transactions on Bioengineering and Bioinformatics (2709-4111) 21
(2021), 3;
E3, 8
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
artificial intelligence ; COVID-19 ; DeepLabv3+ ; semantic segmentation ; X-ray images
Sažetak
INTRODUCTION: As a result of this global health crisis caused by the COVID-19 pandemic, the medical industry is searching for innovations that have the potential to automate the diagnostic process of COVID-19 and serve as an assistive tool for clinicians. OBJECTIVES: X-ray images have shown to be useful in the diagnosis of COVID-19. The goal of this research is to demonstrate an approach for automatic segmentation of lungs in chest X-ray images. METHODS: In this research DeepLabv3+ with Xception_65, MobileNetV2, and ResNet101 as backbones are used in order to perform lung segmentation. RESULTS: The proposed approach was experimented on X-ray images and has achieved an average mIOU of 0.910, F1 of 0.925, accuracy of 0.968, precision of 0.916, sensitivity of 0.935, and specificity of 0.977. CONCLUSION: Based on the obtained results, the proposed approach proved to be successful in terms of lung segmentation in chest X-ray images and has a great potential for clinical use.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Kliničke medicinske znanosti, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)
POVEZANOST RADA
Projekti:
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka
Profili:
Nenad Filipović
(autor)
Nikola Anđelić
(autor)
Sandi Baressi Šegota
(autor)
Ivan Lorencin
(autor)
Zlatan Car
(autor)
Jelena Musulin
(autor)
Saša Vlahinić
(autor)
Daniel Štifanić
(autor)