Pregled bibliografske jedinice broj: 1134629
Systematic Review of Anomaly Detection in Hyperspectral Remote Sensing Applications
Systematic Review of Anomaly Detection in Hyperspectral Remote Sensing Applications // Applied Sciences-Basel, 11 (2021), 11; 4878, 35 doi:10.3390/app11114878 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1134629 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Systematic Review of Anomaly Detection in
Hyperspectral Remote Sensing Applications
Autori
Racetin, Ivan ; Krtalić, Andrija
Izvornik
Applied Sciences-Basel (2076-3417) 11
(2021), 11;
4878, 35
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
target detection ; Reed-Xiaoli algorithm ; background models ; kernel-based methods ; representation models
Sažetak
Hyperspectral sensors are passive instruments that record reflected electromagnetic radiation in tens or hundreds of narrow and consecutive spectral bands. In the last two decades, the availability of hyperspectral data has sharply increased, propelling the development of a plethora of hyperspectral classification and target detection algorithms. Anomaly detection methods in hyperspectral images refer to a class of target detection methods that do not require any a-priori knowledge about a hyperspectral scene or target spectrum. They are unsupervised learning techniques that automatically discover rare features on hyperspectral images. This review paper is organized into two parts: part A provides a bibliographic analysis of hyperspectral image processing for anomaly detection in remote sensing applications. Development of the subject field is discussed, and key authors and journals are highlighted. In part B an overview of the topic is presented, starting from the mathematical framework for anomaly detection. The anomaly detection methods were generally categorized as techniques that implement structured or unstructured background models and then organized into appropriate sub-categories. Specific anomaly detection methods are presented with corresponding detection statistics, and their properties are discussed. This paper represents the first review regarding hyperspectral image processing for anomaly detection in remote sensing applications.
Izvorni jezik
Engleski
Znanstvena područja
Geodezija, Računarstvo
POVEZANOST RADA
Projekti:
EK-EFRR-KK.01.1.1.02.0027 - Implementacijom suvremene znanstvenoistraživačke infrastrukture na FGAG Split do pametne specijalizacije u zelenoj i energetski učinkovitoj gradnji (Jajac, Nikša, EK - KK.01.1.1.02) ( CroRIS)
Ustanove:
Geodetski fakultet, Zagreb,
Fakultet građevinarstva, arhitekture i geodezije, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus