Pregled bibliografske jedinice broj: 1134292
Comprehensive machine learning based study of the chemical space of herbicides
Comprehensive machine learning based study of the chemical space of herbicides // Scientific reports, 11 (2021), 11479, 12 doi:10.1038/s41598-021-90690-w (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1134292 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comprehensive machine learning based study of the
chemical space of herbicides
Autori
Oršolić, Davor ; Pehar, Vesna ; Šmuc, Tomislav ; Stepanić, Višnja
Izvornik
Scientific reports (2045-2322) 11
(2021);
11479, 12
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
herbicides ; HRAC ; virtual screening ; natural products ; machine learning ; Random Forest ; weed selectivity
Sažetak
Widespread use of herbicides results in the global increase in weed resistance. The rotational use of herbicides according to their modes of action (MoAs) and discovery of novel phytotoxic molecules are the two strategies used against the weed resistance. Herein, Random Forest modeling was used to build predictive models and establish comprehensive characterization of structure-activity relationships (SAR) underlying herbicide classifications according to their MoAs and weed selectivity. By combining the predictive models with herbicide-like rules defined by selected molecular features (numbers of H-bond acceptors and donors, logP, topological (TPSA) and relative (RelPSA) polar surface area, and net charge), the virtual stepwise screening platform is proposed for characterization of small weight molecules for their phytotoxic properties. The screening cascade was applied on the data set of phytotoxic natural products. The obtained results may be valuable for refinement of herbicide rotational program as well as for discovery of novel herbicides primarily among natural products as a source for molecules of novel structures and novel sites of action and translocation profiles as compared with the synthetic compounds.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Biologija, Interdisciplinarne prirodne znanosti, Računarstvo, Poljoprivreda (agronomija)
POVEZANOST RADA
Projekti:
EK-KF-KK.01.1.1.01.0002 - Bioprospecting Jadranskog mora (Jerković, Igor; Dragović-Uzelac, Verica; Šantek, Božidar; Čož-Rakovac, Rozelinda; Kraljević Pavelić, Sandra; Jokić, Stela, EK ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE