Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1132796

Linearization and Holder Continuity for Nonautonomous Systems


Backes, Lucas; Dragičević, Davor; Palmer James Kenneth
Linearization and Holder Continuity for Nonautonomous Systems // Journal of differential equations, 297 (2021), 536-574 doi:10.1016/j.jde.2021.06.035 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1132796 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Linearization and Holder Continuity for Nonautonomous Systems

Autori
Backes, Lucas ; Dragičević, Davor ; Palmer James Kenneth

Izvornik
Journal of differential equations (0022-0396) 297 (2021); 536-574

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
nonautonomous dynamics ; linearization ; Grobman-Hartman theorem

Sažetak
We consider a nonautonomous system \[ \dot x=A(t)x+f(t, x, y), \quad \dot y = g(t, y)\] and give conditions under which there is a transformation of the form $H(t, x, y)$ $= (x+h(t, x, y), y)$ taking its solutions onto the solutions of the partially linearized system \[ \dot x=A(t)x, \quad \dot y = g(t, y).\] Shi and Xiong \cite{; ; SX}; ; proved a special case where $g(t, y)$ was a linear function of $y$ and $\dot x=A(t)x$ had an exponential dichotomy. Our assumptions on $A$ and $f$ are of the general form considered by Reinfelds and Steinberga \cite{; ; RS}; ; , which include many of the generalizations of Palmer's theorem proved by other authors. Inspired by the work of Shi and Xiong, we also prove H\" older continuity of $H$ and its inverse in $x$ and $y$. Again the proofs are given in the context of Reinfelds and Steinberga but we show what the results reduce to when $\dot x=A(t)x$ is assumed to have an exponential dichotomy. The paper is concluded with the discrete version of the results.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-1239 - Operatori pomaka, statistički zakoni i beskonačno-dimenzionalni dinamički sustavi (TOSLDS) (Dragičević, Davor, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku

Profili:

Avatar Url Davor Dragičević (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Backes, Lucas; Dragičević, Davor; Palmer James Kenneth
Linearization and Holder Continuity for Nonautonomous Systems // Journal of differential equations, 297 (2021), 536-574 doi:10.1016/j.jde.2021.06.035 (međunarodna recenzija, članak, znanstveni)
Backes, L., Dragičević, D. & Palmer James Kenneth (2021) Linearization and Holder Continuity for Nonautonomous Systems. Journal of differential equations, 297, 536-574 doi:10.1016/j.jde.2021.06.035.
@article{article, author = {Backes, Lucas and Dragi\v{c}evi\'{c}, Davor}, year = {2021}, pages = {536-574}, DOI = {10.1016/j.jde.2021.06.035}, keywords = {nonautonomous dynamics, linearization, Grobman-Hartman theorem}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2021.06.035}, volume = {297}, issn = {0022-0396}, title = {Linearization and Holder Continuity for Nonautonomous Systems}, keyword = {nonautonomous dynamics, linearization, Grobman-Hartman theorem} }
@article{article, author = {Backes, Lucas and Dragi\v{c}evi\'{c}, Davor}, year = {2021}, pages = {536-574}, DOI = {10.1016/j.jde.2021.06.035}, keywords = {nonautonomous dynamics, linearization, Grobman-Hartman theorem}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2021.06.035}, volume = {297}, issn = {0022-0396}, title = {Linearization and Holder Continuity for Nonautonomous Systems}, keyword = {nonautonomous dynamics, linearization, Grobman-Hartman theorem} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font