Pregled bibliografske jedinice broj: 1132796
Linearization and Holder Continuity for Nonautonomous Systems
Linearization and Holder Continuity for Nonautonomous Systems // Journal of differential equations, 297 (2021), 536-574 doi:10.1016/j.jde.2021.06.035 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1132796 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Linearization and Holder Continuity for
Nonautonomous Systems
Autori
Backes, Lucas ; Dragičević, Davor ; Palmer James Kenneth
Izvornik
Journal of differential equations (0022-0396) 297
(2021);
536-574
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
nonautonomous dynamics ; linearization ; Grobman-Hartman theorem
Sažetak
We consider a nonautonomous system \[ \dot x=A(t)x+f(t, x, y), \quad \dot y = g(t, y)\] and give conditions under which there is a transformation of the form $H(t, x, y)$ $= (x+h(t, x, y), y)$ taking its solutions onto the solutions of the partially linearized system \[ \dot x=A(t)x, \quad \dot y = g(t, y).\] Shi and Xiong \cite{; ; SX}; ; proved a special case where $g(t, y)$ was a linear function of $y$ and $\dot x=A(t)x$ had an exponential dichotomy. Our assumptions on $A$ and $f$ are of the general form considered by Reinfelds and Steinberga \cite{; ; RS}; ; , which include many of the generalizations of Palmer's theorem proved by other authors. Inspired by the work of Shi and Xiong, we also prove H\" older continuity of $H$ and its inverse in $x$ and $y$. Again the proofs are given in the context of Reinfelds and Steinberga but we show what the results reduce to when $\dot x=A(t)x$ is assumed to have an exponential dichotomy. The paper is concluded with the discrete version of the results.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-1239 - Operatori pomaka, statistički zakoni i beskonačno-dimenzionalni dinamički sustavi (TOSLDS) (Dragičević, Davor, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Davor Dragičević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus