Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1132611

Multiple STL decomposition in discovering a multi- seasonality of intraday trading volume


Arnerić, Josip
Multiple STL decomposition in discovering a multi- seasonality of intraday trading volume // Croatian operational research review, 12 (2021), 1; 61-74 doi:10.17535/crorr.2021.0006 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1132611 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Multiple STL decomposition in discovering a multi- seasonality of intraday trading volume

Autori
Arnerić, Josip

Izvornik
Croatian operational research review (1848-0225) 12 (2021), 1; 61-74

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
hourly seasonality ; intraday volume ; Loess ; multiple seasonal patterns ; STL decomposition

Sažetak
The seasonal and trend decomposition of a univariate time-series based on Loess (STL) has several advantages over traditional methods. It deals with any periodicity length, enables seasonality change over time, allows missing values, and is robust to outliers. However, it does not handle trading day variation by default. This study offers how to deal with this drawback. By applying multiple STL decompositions of 15-minute trading volume observations, three seasonal patterns were discovered: hourly, daily, and monthly. The research objective was not only to discover if multi-seasonality exists in trading volume by employing high-frequency data but also to determine which seasonal component is most time- varying, and which seasonal components are the strongest or weakest when comparing the variation in the magnitude between them. The results indicate that hourly seasonality is the strongest, while daily seasonality changes the most. A better understanding of trading volume multiple patterns can be very helpful in improving the performance of trading algorithms.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Projekti:
UIP-2013-11-5199 - Mjerenje, modliranje i prognoziranje volatilnosti (Volatility) (Arnerić, Josip, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Ekonomski fakultet, Zagreb

Profili:

Avatar Url Josip Arnerić (autor)

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

Arnerić, Josip
Multiple STL decomposition in discovering a multi- seasonality of intraday trading volume // Croatian operational research review, 12 (2021), 1; 61-74 doi:10.17535/crorr.2021.0006 (međunarodna recenzija, članak, znanstveni)
Arnerić, J. (2021) Multiple STL decomposition in discovering a multi- seasonality of intraday trading volume. Croatian operational research review, 12 (1), 61-74 doi:10.17535/crorr.2021.0006.
@article{article, author = {Arneri\'{c}, Josip}, year = {2021}, pages = {61-74}, DOI = {10.17535/crorr.2021.0006}, keywords = {hourly seasonality, intraday volume, Loess, multiple seasonal patterns, STL decomposition}, journal = {Croatian operational research review}, doi = {10.17535/crorr.2021.0006}, volume = {12}, number = {1}, issn = {1848-0225}, title = {Multiple STL decomposition in discovering a multi- seasonality of intraday trading volume}, keyword = {hourly seasonality, intraday volume, Loess, multiple seasonal patterns, STL decomposition} }
@article{article, author = {Arneri\'{c}, Josip}, year = {2021}, pages = {61-74}, DOI = {10.17535/crorr.2021.0006}, keywords = {hourly seasonality, intraday volume, Loess, multiple seasonal patterns, STL decomposition}, journal = {Croatian operational research review}, doi = {10.17535/crorr.2021.0006}, volume = {12}, number = {1}, issn = {1848-0225}, title = {Multiple STL decomposition in discovering a multi- seasonality of intraday trading volume}, keyword = {hourly seasonality, intraday volume, Loess, multiple seasonal patterns, STL decomposition} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus
  • EconLit


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font