Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1132604

Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques


(n_TOF Collaboration) Babiano-Suárez, V.; ...; Bosnar, Damir; ...; Žugec, Petar
Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques // European physical journal A : hadrons and nuclei, 57 (2021), 197, 17 doi:10.1140/epja/s10050-021-00507-7 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1132604 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques

Autori
Babiano-Suárez, V. ; ... ; Bosnar, Damir ; ... ; Žugec, Petar

Kolaboracija
N_TOF Collaboration

Izvornik
European physical journal A : hadrons and nuclei (1434-6001) 57 (2021); 197, 17

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
i-TED, neutron capture, n_TOF, machine learning

Sažetak
I-TED is an innovative detection system which exploits Compton imaging techniques to achieve a superior signal-to-background ratio in (n, γ) cross-section measurements using time-of-flight technique. This work presents the first experimental validation of the i-TED apparatus for high-resolution time-of-flight experiments and demonstrates for the first time the concept proposed for background rejection. To this aim, the 197Au(n, γ) and 56Fe(n, γ) reactions were studied at CERN n_TOF using an i-TED demonstrator based on three position-sensitive detectors. Two C6D6 detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ∼3 higher detection sensitivity than state-of-the-art C6D6 detectors in the 10 keV neutron-energy region of astrophysical interest. This paper explores also the perspectives of further enhancement in performance attainable with the final i-TED array consisting of twenty position-sensitive detectors and new analysis methodologies based on Machine-Learning techniques.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Petar Žugec (autor)

Avatar Url Damir Bosnar (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

(n_TOF Collaboration) Babiano-Suárez, V.; ...; Bosnar, Damir; ...; Žugec, Petar
Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques // European physical journal A : hadrons and nuclei, 57 (2021), 197, 17 doi:10.1140/epja/s10050-021-00507-7 (međunarodna recenzija, članak, znanstveni)
(n_TOF Collaboration) (n_TOF Collaboration) Babiano-Suárez, V., ..., Bosnar, D., ... & Žugec, P. (2021) Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques. European physical journal A : hadrons and nuclei, 57, 197, 17 doi:10.1140/epja/s10050-021-00507-7.
@article{article, author = {Babiano-Su\'{a}rez, V. and Bosnar, Damir and \v{Z}ugec, Petar}, year = {2021}, pages = {17}, DOI = {10.1140/epja/s10050-021-00507-7}, chapter = {197}, keywords = {i-TED, neutron capture, n\_TOF, machine learning}, journal = {European physical journal A : hadrons and nuclei}, doi = {10.1140/epja/s10050-021-00507-7}, volume = {57}, issn = {1434-6001}, title = {Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques}, keyword = {i-TED, neutron capture, n\_TOF, machine learning}, chapternumber = {197} }
@article{article, author = {Babiano-Su\'{a}rez, V. and Bosnar, Damir and \v{Z}ugec, Petar}, year = {2021}, pages = {17}, DOI = {10.1140/epja/s10050-021-00507-7}, chapter = {197}, keywords = {i-TED, neutron capture, n\_TOF, machine learning}, journal = {European physical journal A : hadrons and nuclei}, doi = {10.1140/epja/s10050-021-00507-7}, volume = {57}, issn = {1434-6001}, title = {Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques}, keyword = {i-TED, neutron capture, n\_TOF, machine learning}, chapternumber = {197} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font