Pregled bibliografske jedinice broj: 1131230
CNN Hyperparameters Selection for Rotating Subsystems Fault Diagnosis
CNN Hyperparameters Selection for Rotating Subsystems Fault Diagnosis // Conference Proceedings od 5th Lean Spring Summit / Stefanic, Nedeljko ; Cajner, Hrvoje (ur.).
Zagreb, 2020. str. 18-24 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1131230 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
CNN Hyperparameters Selection for Rotating Subsystems Fault Diagnosis
Autori
Kolar, Davor ; Lisjak, Dragutin ; Gudlin, Mihael
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Conference Proceedings od 5th Lean Spring Summit
/ Stefanic, Nedeljko ; Cajner, Hrvoje - Zagreb, 2020, 18-24
Skup
Lean Spring Summit: Digital technologies in the factory of the future
Mjesto i datum
Online, 25.06.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
condition-based maintenance, rotating systems, fault diagnosis, convolutional neural networks
Sažetak
Fault diagnosis is considered as an essential task in rotary machinery as possibility of an early detection and diagnosis of the faulty condition can save both time and money. Traditional data-driven techniques for fault diagnosis require signal processing for feature extraction, as they are unable to work with raw signal data, consequently leading to need for both expert knowledge and human work. This paper presents authors research in deep learning-based data-driven fault diagnosis of rotating subsystems. Different combinations of hyperparameters are prepared for training and testing. Then, convolutional artificial neural network is used for training a model that can predict class identifying the state of the rotary machinery based on the collected data. Accuracy on test data is used as a metric for hyperparameters combination effectiveness.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb