Pregled bibliografske jedinice broj: 1130800
Multivariate AI-based predictive model of nanoscale friction
Multivariate AI-based predictive model of nanoscale friction // Proceedings of the 21th International Conference of the European Society for Precision Engineering and Nanotechnology / Leach, R. K. ; Nisbet, C. Philips, D. (ur.).
online: European Society for Precision Engineering and Nanotechnology (EUSPEN), 2021. str. 121-124 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1130800 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multivariate AI-based predictive model of
nanoscale
friction
Autori
Perčić, Marko ; Zelenika, Saša ; Mezić, Igor
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 21th International Conference of the European Society for Precision Engineering and Nanotechnology
/ Leach, R. K. ; Nisbet, C. Philips, D. - : European Society for Precision Engineering and Nanotechnology (EUSPEN), 2021, 121-124
ISBN
978-0-9957751-9-0
Skup
21th International Conference of the European Society for Precision Engineering and Nanotechnology
Mjesto i datum
Online, 07.06.2021. - 11.06.2021
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
nanoscale friction ; artificial intelligence ; predictive white box model
Sažetak
As a major source of uncertainties in micro- and nanopositioning devices, friction, characterised by complex stochastic phenomena, is one of the major challenges in developing reliable predictive models od systems’ behaviour. Based on recently performed lateral force microscopy experimental measurements of thin films’ nanoscale friction, fundamental frictional mechanisms in atomic-scale single- asperity contacts are investigated in this work vs. the concurrent influence of multivariate process parameters. The hence proposed nanoscale friction models are developed using innovative artificial intelligence-based methods. In fact, although in a previous study the employment of conventional (black box) machine learning methods provided rather good predictive performances, the intrinsic nature of these models prevents their usage in most practical applications. The novel methodology proposed in this work allows, in turn, attaining an extremely simple mathematical formulation (i.e., a white box model) providing an immediate insight and a unique scientific perspective into the multidimensional dependence of nanoscale friction on the studied variable influencing parameters. What is more, this artificial intelligence-based approach allows achieving a high predictive performance with R2 values in the range of 0.75, while the simplicity of the obtained expressions makes future studies and possible practical applications (e.g. in the corresponding control algorithms) rather straightforward.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
NadSve-uniri-tehnic-18-32 - Inovativne mehatroničke konstrukcije za pametna tehnološka rješenja (Zelenika, Saša, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci za 2018. godinu - projekti iskusnih znanstvenika i umjetnika) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-mladi-tehnic-20-15 - Višerazniska karakterizacija trenja korištenjem inovativnog interdisciplinarnog pristupa (Perčić, Marko, NadSve - UNIRI projekti mladih znanstvenika i umjetnika) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci