Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1129281

Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble


Sarajcev, Petar; Kunac, Antonijo; Petrovic, Goran; Despalatovic, Marin
Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble // Energies, 14 (2021), 11; 3148, 26 doi:10.3390/en14113148 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1129281 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble

Autori
Sarajcev, Petar ; Kunac, Antonijo ; Petrovic, Goran ; Despalatovic, Marin

Izvornik
Energies (1996-1073) 14 (2021), 11; 3148, 26

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
power system stability ; transient stability assessment ; transient stability index ; machine learning ; deep learning ; autoencoder ; transfer learning ; ensemble ; dataset

Sažetak
Increased integration of renewable energy sources brings new challenges to the secure and stable power system operation. Operational challenges emanating from the reduced system inertia, in particular, will have important repercussions on the power system transient stability assessment (TSA). At the same time, a rise of the “big data” in the power system, from the development of wide area monitoring systems, introduces new paradigms for dealing with these challenges. Transient stability concerns are drawing attention of various stakeholders as they can be the leading causes of major outages. The aim of this paper is to address the power system TSA problem from the perspective of data mining and machine learning (ML). A novel 3.8 GB open dataset of time-domain phasor measurements signals is built from dynamic simulations of the IEEE New England 39-bus test case power system. A data processing pipeline is developed for features engineering and statistical post-processing. A complete ML model is proposed for the TSA analysis, built from a denoising stacked autoencoder and a voting ensemble classifier. Ensemble consist of pooling predictions from a support vector machine and a random forest. Results from the classifier application on the test case power system are reported and discussed. The ML application to the TSA problem is promising, since it is able to ingest huge amounts of data while retaining the ability to generalize and support real-time decisions.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
IP-2019-04-7292 - Simulator poremećaja u elektroenergetskom sustavu i kalibrator nesinusnih napona i struja (SIMPES) (Petrović, Goran, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Sarajcev, Petar; Kunac, Antonijo; Petrovic, Goran; Despalatovic, Marin
Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble // Energies, 14 (2021), 11; 3148, 26 doi:10.3390/en14113148 (međunarodna recenzija, članak, znanstveni)
Sarajcev, P., Kunac, A., Petrovic, G. & Despalatovic, M. (2021) Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble. Energies, 14 (11), 3148, 26 doi:10.3390/en14113148.
@article{article, author = {Sarajcev, Petar and Kunac, Antonijo and Petrovic, Goran and Despalatovic, Marin}, year = {2021}, pages = {26}, DOI = {10.3390/en14113148}, chapter = {3148}, keywords = {power system stability, transient stability assessment, transient stability index, machine learning, deep learning, autoencoder, transfer learning, ensemble, dataset}, journal = {Energies}, doi = {10.3390/en14113148}, volume = {14}, number = {11}, issn = {1996-1073}, title = {Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble}, keyword = {power system stability, transient stability assessment, transient stability index, machine learning, deep learning, autoencoder, transfer learning, ensemble, dataset}, chapternumber = {3148} }
@article{article, author = {Sarajcev, Petar and Kunac, Antonijo and Petrovic, Goran and Despalatovic, Marin}, year = {2021}, pages = {26}, DOI = {10.3390/en14113148}, chapter = {3148}, keywords = {power system stability, transient stability assessment, transient stability index, machine learning, deep learning, autoencoder, transfer learning, ensemble, dataset}, journal = {Energies}, doi = {10.3390/en14113148}, volume = {14}, number = {11}, issn = {1996-1073}, title = {Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble}, keyword = {power system stability, transient stability assessment, transient stability index, machine learning, deep learning, autoencoder, transfer learning, ensemble, dataset}, chapternumber = {3148} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font