Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1128092

Can local geographically restricted measurements be used to recover missing geo-spatial data?


Kalinić, Hrvoje; Bilokapić, Zvonimir; Matić, Frano
Can local geographically restricted measurements be used to recover missing geo-spatial data? // Sensors, 21 (2021), 10; 3507, 16 doi:10.3390/s21103507 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1128092 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Can local geographically restricted measurements be used to recover missing geo-spatial data?

Autori
Kalinić, Hrvoje ; Bilokapić, Zvonimir ; Matić, Frano

Izvornik
Sensors (1424-8220) 21 (2021), 10; 3507, 16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
data reconstruction ; machine learning ; neural networks ; missing data ; spatio/temporal resolution ; interpolation ; reanalisys

Sažetak
The experiments conducted on the wind data provided by the European Centre for Medium-range Weather Forecasts show that 1% of the data is sufficient to reconstruct the other 99% with an average amplitude error of less than 0.5 m/s and an average angular error of less than 5 degrees. In a nutshell, our method provides an approach where a portion of the data is used as a proxy to estimate the measurements over the entire domain based only on a few measurements. In our study, we compare several machine learning techniques, namely: linear regression, K-nearest neighbours, decision trees and a neural network, and investigate the impact of sensor placement on the quality of the reconstruction. While methods provide comparable results the results show that sensor placement plays an important role. Thus, we propose that intelligent location selection for sensor placement can be done using k- means, and show that this indeed leads to increase in accuracy as compared to random sensor placement.

Izvorni jezik
Engleski

Znanstvena područja
Geofizika, Interdisciplinarne prirodne znanosti, Računarstvo, Temeljne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-UIP-2019-04-1737 - Proširenje osjetilnosti senzora u laboratoriju za obradbu i analizu podataka iz okoline (SSA@EDAL) (Kalinić, Hrvoje, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Institut za oceanografiju i ribarstvo, Split,
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Frano Matić (autor)

Avatar Url Hrvoje Kalinić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Kalinić, Hrvoje; Bilokapić, Zvonimir; Matić, Frano
Can local geographically restricted measurements be used to recover missing geo-spatial data? // Sensors, 21 (2021), 10; 3507, 16 doi:10.3390/s21103507 (međunarodna recenzija, članak, znanstveni)
Kalinić, H., Bilokapić, Z. & Matić, F. (2021) Can local geographically restricted measurements be used to recover missing geo-spatial data?. Sensors, 21 (10), 3507, 16 doi:10.3390/s21103507.
@article{article, author = {Kalini\'{c}, Hrvoje and Bilokapi\'{c}, Zvonimir and Mati\'{c}, Frano}, year = {2021}, pages = {16}, DOI = {10.3390/s21103507}, chapter = {3507}, keywords = {data reconstruction, machine learning, neural networks, missing data, spatio/temporal resolution, interpolation, reanalisys}, journal = {Sensors}, doi = {10.3390/s21103507}, volume = {21}, number = {10}, issn = {1424-8220}, title = {Can local geographically restricted measurements be used to recover missing geo-spatial data?}, keyword = {data reconstruction, machine learning, neural networks, missing data, spatio/temporal resolution, interpolation, reanalisys}, chapternumber = {3507} }
@article{article, author = {Kalini\'{c}, Hrvoje and Bilokapi\'{c}, Zvonimir and Mati\'{c}, Frano}, year = {2021}, pages = {16}, DOI = {10.3390/s21103507}, chapter = {3507}, keywords = {data reconstruction, machine learning, neural networks, missing data, spatio/temporal resolution, interpolation, reanalisys}, journal = {Sensors}, doi = {10.3390/s21103507}, volume = {21}, number = {10}, issn = {1424-8220}, title = {Can local geographically restricted measurements be used to recover missing geo-spatial data?}, keyword = {data reconstruction, machine learning, neural networks, missing data, spatio/temporal resolution, interpolation, reanalisys}, chapternumber = {3507} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font