Pregled bibliografske jedinice broj: 1127234
WINTENDED: WINdowed TENsor decomposition for Densification Event Detection in time-evolving networks
WINTENDED: WINdowed TENsor decomposition for Densification Event Detection in time-evolving networks // Machine learning, 112 (2023), 2; 459-481 doi:10.1007/s10994-021-05979-8 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1127234 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
WINTENDED: WINdowed TENsor decomposition for Densification Event Detection in time-evolving networks
Autori
Fernandes, Sofia ; Fanaee‑T, Hadi ; Gama, João ; Tišljarić, Leo ; Šmuc, Tomislav
Izvornik
Machine learning (0885-6125) 112
(2023), 2;
459-481
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Time-evolving networks ; Tensor decomposition ; Event detection
Sažetak
Densification events in time-evolving networks refer to instants in which the network density, that is, the number of edges, is substantially larger than in the remaining. These events can occur at a global level, involving the majority of the nodes in the network, or at a local level involving only a subset of nodes. While global densification events affect the overall structure of the network, the same does not hold in local densification events, which may remain undetectable by the existing detection methods. In order to address this issue, we propose WINdowed TENsor decomposition for Densification Event Detection (WINTENDED) for the detection and characterization of both global and local densification events. Our method combines a sliding window decomposition with statistical tools to capture the local dynamics of the network and automatically find the irregular behaviours. According to our experimental evaluation, WINTENDED is able to spot global densification events at least as accurately as its competitors, while also being able to find local densification events, on the contrary to its competitors.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti, Interdisciplinarne društvene znanosti
Napomena
Part of a collection:
Special Issue on Discovery Science (2019)
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Fakultet prometnih znanosti, Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi www.researchgate.net link.springer.comCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus