Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1124729

Šare's algebraic systems


Essert, Mario; Žubrinić, Darko
Šare's algebraic systems // Acta Mathematica Spalatensia, 2 (2022), 1-26 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1124729 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Šare's algebraic systems

Autori
Essert, Mario ; Žubrinić, Darko

Izvornik
Acta Mathematica Spalatensia (2757-1688) 2 (2022); 1-26

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Šare algebraic systems or M-systems, jorbs, free semigroups over alphabets, Šare’s sum, compression of jorbs, regular semigroups, Šare’s categories

Sažetak
We study algebraic systems M_Γ of free semigroup structure, where Γ is a well ordered finite alphabet, discovered in 1970s within the Theory of Electric Circuits by Miro Šare, and finding recent applications in Multivalued Logic, as well as in Computational Linguistics. We provide three simple axioms (reversion axiom (5) and two compression axioms (6) and (7)), which generate the corresponding equivalence relation between words. We also introduce a class of incompressible words, as well as the quotient Šare system \tilde M_Γ. The main result is contained in Theorem 16, announced by Šare without proof, which characterizes the equivalence of two words by means of Šare sums. The proof is constructive. We describe an algorithm for compression of words, study homomorphisms between quotient Šare systems for various alphabets Γ (Theorem 38), and introduce two natural Šare categories Ša(M) and Ša(\tilde M). Quotient Šare systems are regular semigroups, but not inverse semigroups.

Izvorni jezik
Engleski

Znanstvena područja
Matematika

Napomena
Članak je prihvaćen za objavljivanje ožujka 2021.



POVEZANOST RADA


Profili:

Avatar Url Mario Essert (autor)

Avatar Url Darko Žubrinić (autor)


Citiraj ovu publikaciju:

Essert, Mario; Žubrinić, Darko
Šare's algebraic systems // Acta Mathematica Spalatensia, 2 (2022), 1-26 (međunarodna recenzija, članak, znanstveni)
Essert, M. & Žubrinić, D. (2022) Šare's algebraic systems. Acta Mathematica Spalatensia, 2, 1-26.
@article{article, author = {Essert, Mario and \v{Z}ubrini\'{c}, Darko}, year = {2022}, pages = {1-26}, keywords = {\v{S}are algebraic systems or M-systems, jorbs, free semigroups over alphabets, \v{S}are’s sum, compression of jorbs, regular semigroups, \v{S}are’s categories}, journal = {Acta Mathematica Spalatensia}, volume = {2}, issn = {2757-1688}, title = {\v{S}are's algebraic systems}, keyword = {\v{S}are algebraic systems or M-systems, jorbs, free semigroups over alphabets, \v{S}are’s sum, compression of jorbs, regular semigroups, \v{S}are’s categories} }
@article{article, author = {Essert, Mario and \v{Z}ubrini\'{c}, Darko}, year = {2022}, pages = {1-26}, keywords = {\v{S}are algebraic systems or M-systems, jorbs, free semigroups over alphabets, \v{S}are’s sum, compression of jorbs, regular semigroups, \v{S}are’s categories}, journal = {Acta Mathematica Spalatensia}, volume = {2}, issn = {2757-1688}, title = {\v{S}are's algebraic systems}, keyword = {\v{S}are algebraic systems or M-systems, jorbs, free semigroups over alphabets, \v{S}are’s sum, compression of jorbs, regular semigroups, \v{S}are’s categories} }




Contrast
Increase Font
Decrease Font
Dyslexic Font