Pregled bibliografske jedinice broj: 1124630
Confluence of Singularities in Hypergeometric Systems
Confluence of Singularities in Hypergeometric Systems // Funkcialaj Ekvacioj-Serio Internacia, 63 (2020), 2; 153-181 doi:10.1619/fesi.63.153 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1124630 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Confluence of Singularities in Hypergeometric Systems
Autori
Klimeš, Martin
Izvornik
Funkcialaj Ekvacioj-Serio Internacia (0532-8721) 63
(2020), 2;
153-181
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
linear differential equations ; generalized hypergeometric equation ; confluence ; Stokes matrices ; monodromy
Sažetak
A system in a Birkhoff normal form with an irregular singularity of Poincare rank 1 at the origin and a regular singularity at infinity is dual through the Borel-Laplace transform to a system in an Okubo form. Schafke has showed that the Birkhoff system can also be obtained from the Okubo system by a simple limiting procedure. The Okubo system comes naturally with two kinds of mixed solution bases, both of which are shown to converge under the limit procedure to the canonical sectoral solutions of the limit Birkhoff system. We define Stokes matrices of the Okubo system as connection matrices between different branches of these mixed solution bases and use them to relate the monodromy matrices of the Okubo system to the usual Stokes matrices of the limit system at the irregular singularity. This is illustrated on the example of confluence in the generalized hypergeometric equation.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus