Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1124490

Opportunistic monitoring of pavements for noise labeling and mitigation with machine learning


Van Hauwermeiren, Wout; Filipan, Karlo; Botteldooren, Dick; De Coensel, Bert
Opportunistic monitoring of pavements for noise labeling and mitigation with machine learning // Transportation Research Part D: Transport and Environment, 90 (2021), 102636, 17 doi:10.1016/j.trd.2020.102636 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1124490 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Opportunistic monitoring of pavements for noise labeling and mitigation with machine learning

Autori
Van Hauwermeiren, Wout ; Filipan, Karlo ; Botteldooren, Dick ; De Coensel, Bert

Izvornik
Transportation Research Part D: Transport and Environment (1361-9209) 90 (2021); 102636, 17

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Road noise ; Rolling noise ; Blind sensor calibration ; Artificial neural networks ; De-noising autoencoder

Sažetak
Currently, municipalities assess rolling noise on road surfaces using Close-Proximity measurements (CPX). To avoid these labor-intensive measurements, an opportunistic approach based on commodity sensors in a fleet of cars, is proposed. Blind sensor calibration eliminates the effect of measurement vehicle and varying observation conditions. Calibration relies on spatial coherence: modifiers and confounders do not interact strongly with location while the quantity of interest depends on location and less on measurement vehicle. Generalized additive speed models, car offset and de-noising autoencoders (DAE) were investigated. DAE achieves prominent results: (1) ratio of variability of measurements at a single location to the variability of measurements over all locations increases, (2) convergence of mean measurement at a location is faster, and (3) seasonal effects are eliminated. Finally, although the proposed method includes a diversity of tires, below 1600 Hz its results differ from CPX less than the difference between bi-annually repeated CPX measurements.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Profili:

Avatar Url Karlo Filipan (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Van Hauwermeiren, Wout; Filipan, Karlo; Botteldooren, Dick; De Coensel, Bert
Opportunistic monitoring of pavements for noise labeling and mitigation with machine learning // Transportation Research Part D: Transport and Environment, 90 (2021), 102636, 17 doi:10.1016/j.trd.2020.102636 (međunarodna recenzija, članak, znanstveni)
Van Hauwermeiren, W., Filipan, K., Botteldooren, D. & De Coensel, B. (2021) Opportunistic monitoring of pavements for noise labeling and mitigation with machine learning. Transportation Research Part D: Transport and Environment, 90, 102636, 17 doi:10.1016/j.trd.2020.102636.
@article{article, author = {Van Hauwermeiren, Wout and Filipan, Karlo and Botteldooren, Dick and De Coensel, Bert}, year = {2021}, pages = {17}, DOI = {10.1016/j.trd.2020.102636}, chapter = {102636}, keywords = {Road noise, Rolling noise, Blind sensor calibration, Artificial neural networks, De-noising autoencoder}, journal = {Transportation Research Part D: Transport and Environment}, doi = {10.1016/j.trd.2020.102636}, volume = {90}, issn = {1361-9209}, title = {Opportunistic monitoring of pavements for noise labeling and mitigation with machine learning}, keyword = {Road noise, Rolling noise, Blind sensor calibration, Artificial neural networks, De-noising autoencoder}, chapternumber = {102636} }
@article{article, author = {Van Hauwermeiren, Wout and Filipan, Karlo and Botteldooren, Dick and De Coensel, Bert}, year = {2021}, pages = {17}, DOI = {10.1016/j.trd.2020.102636}, chapter = {102636}, keywords = {Road noise, Rolling noise, Blind sensor calibration, Artificial neural networks, De-noising autoencoder}, journal = {Transportation Research Part D: Transport and Environment}, doi = {10.1016/j.trd.2020.102636}, volume = {90}, issn = {1361-9209}, title = {Opportunistic monitoring of pavements for noise labeling and mitigation with machine learning}, keyword = {Road noise, Rolling noise, Blind sensor calibration, Artificial neural networks, De-noising autoencoder}, chapternumber = {102636} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font