Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1124429

Takelab at SemEval-2017 task 5: Linear aggregation of word embeddings for fine-grained sentiment analysis of financial news


Rotim, Leon; Tutek, Martin; Šnajder, Jan
Takelab at SemEval-2017 task 5: Linear aggregation of word embeddings for fine-grained sentiment analysis of financial news // Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
Vancouver, Kanada, 2017. str. 866-871 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1124429 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Takelab at SemEval-2017 task 5: Linear aggregation of word embeddings for fine-grained sentiment analysis of financial news

Autori
Rotim, Leon ; Tutek, Martin ; Šnajder, Jan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017) / - , 2017, 866-871

Skup
The 11th International Workshop on Semantic Evaluation (SemEval-2017)

Mjesto i datum
Vancouver, Kanada, 03.08.2017. - 04.08.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
sentiment analysis ; kernel regression ; support vector machine

Sažetak
This paper describes our system for fine-grained sentiment scoring of news headlines submitted to SemEval 2017 task 5–subtask 2. Our system uses a feature-light method that consists of a Support Vector Regression (SVR) with various kernels and word vectors as features. Our best-performing submission scored 3rd on the task out of 29 teams and 4th out of 45 submissions with a cosine score of 0.733.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Jan Šnajder (autor)

Avatar Url Martin Tutek (autor)

Poveznice na cjeloviti tekst rada:

www.aclweb.org

Citiraj ovu publikaciju:

Rotim, Leon; Tutek, Martin; Šnajder, Jan
Takelab at SemEval-2017 task 5: Linear aggregation of word embeddings for fine-grained sentiment analysis of financial news // Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
Vancouver, Kanada, 2017. str. 866-871 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Rotim, L., Tutek, M. & Šnajder, J. (2017) Takelab at SemEval-2017 task 5: Linear aggregation of word embeddings for fine-grained sentiment analysis of financial news. U: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017).
@article{article, author = {Rotim, Leon and Tutek, Martin and \v{S}najder, Jan}, year = {2017}, pages = {866-871}, keywords = {sentiment analysis, kernel regression, support vector machine}, title = {Takelab at SemEval-2017 task 5: Linear aggregation of word embeddings for fine-grained sentiment analysis of financial news}, keyword = {sentiment analysis, kernel regression, support vector machine}, publisherplace = {Vancouver, Kanada} }
@article{article, author = {Rotim, Leon and Tutek, Martin and \v{S}najder, Jan}, year = {2017}, pages = {866-871}, keywords = {sentiment analysis, kernel regression, support vector machine}, title = {Takelab at SemEval-2017 task 5: Linear aggregation of word embeddings for fine-grained sentiment analysis of financial news}, keyword = {sentiment analysis, kernel regression, support vector machine}, publisherplace = {Vancouver, Kanada} }




Contrast
Increase Font
Decrease Font
Dyslexic Font