Pregled bibliografske jedinice broj: 1124418
TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts
TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts // Proceedings of the 12th International Workshop on Semantic Evaluation
New Orleans (LA), Sjedinjene Američke Države, 2018. str. 842-847 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1124418 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts
Autori
Gluhak, Martin ; Pia di Buono, Maria ; Akkasi, Abbas ; Šnajder, Jan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 12th International Workshop on Semantic Evaluation
/ - , 2018, 842-847
Skup
The 12th International Workshop on Semantic Evaluation
Mjesto i datum
New Orleans (LA), Sjedinjene Američke Države, 05.06.2018. - 06.06.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
semantic relation classification ; machine learning
Sažetak
We describe two systems for semantic relation classification with which we participated in the SemEval 2018 Task 7, subtask 1 on semantic relation classification: an SVM model and a CNN model. Both models combine dense pretrained word2vec features and hancrafted sparse features. For training the models, we combine the two datasets provided for the subtasks in order to balance the under-represented classes. The SVM model performed better than CNN, achieving a F1-macro score of 69.98% on subtask 1.1 and 75.69% on subtask 1.2. The system ranked 7th on among 28 submissions on subtask 1.1 and 7th among 20 submissions on subtask 1.2.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Jan Šnajder
(autor)