Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1124418

TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts


Gluhak, Martin; Pia di Buono, Maria; Akkasi, Abbas; Šnajder, Jan
TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts // Proceedings of the 12th International Workshop on Semantic Evaluation
New Orleans (LA), Sjedinjene Američke Države, 2018. str. 842-847 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1124418 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts

Autori
Gluhak, Martin ; Pia di Buono, Maria ; Akkasi, Abbas ; Šnajder, Jan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 12th International Workshop on Semantic Evaluation / - , 2018, 842-847

Skup
The 12th International Workshop on Semantic Evaluation

Mjesto i datum
New Orleans (LA), Sjedinjene Američke Države, 05.06.2018. - 06.06.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
semantic relation classification ; machine learning

Sažetak
We describe two systems for semantic relation classification with which we participated in the SemEval 2018 Task 7, subtask 1 on semantic relation classification: an SVM model and a CNN model. Both models combine dense pretrained word2vec features and hancrafted sparse features. For training the models, we combine the two datasets provided for the subtasks in order to balance the under-represented classes. The SVM model performed better than CNN, achieving a F1-macro score of 69.98% on subtask 1.1 and 75.69% on subtask 1.2. The system ranked 7th on among 28 submissions on subtask 1.1 and 7th among 20 submissions on subtask 1.2.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Jan Šnajder (autor)

Poveznice na cjeloviti tekst rada:

www.aclweb.org

Citiraj ovu publikaciju:

Gluhak, Martin; Pia di Buono, Maria; Akkasi, Abbas; Šnajder, Jan
TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts // Proceedings of the 12th International Workshop on Semantic Evaluation
New Orleans (LA), Sjedinjene Američke Države, 2018. str. 842-847 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gluhak, M., Pia di Buono, M., Akkasi, A. & Šnajder, J. (2018) TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts. U: Proceedings of the 12th International Workshop on Semantic Evaluation.
@article{article, author = {Gluhak, Martin and Pia di Buono, Maria and Akkasi, Abbas and \v{S}najder, Jan}, year = {2018}, pages = {842-847}, keywords = {semantic relation classification, machine learning}, title = {TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts}, keyword = {semantic relation classification, machine learning}, publisherplace = {New Orleans (LA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Gluhak, Martin and Pia di Buono, Maria and Akkasi, Abbas and \v{S}najder, Jan}, year = {2018}, pages = {842-847}, keywords = {semantic relation classification, machine learning}, title = {TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts}, keyword = {semantic relation classification, machine learning}, publisherplace = {New Orleans (LA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font