Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1124411

TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection


Palić, Niko; Vladika, Juraj; Čubelić, Dominik; Lovrenčić, Ivan; Buljan, Maja; Šnajder, Jan
TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection // Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019)
Minneapolis (MN), Sjedinjene Američke Države: Association for Computational Linguistics (ACL), 2019. str. 995-998 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1124411 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection

Autori
Palić, Niko ; Vladika, Juraj ; Čubelić, Dominik ; Lovrenčić, Ivan ; Buljan, Maja ; Šnajder, Jan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019) / - : Association for Computational Linguistics (ACL), 2019, 995-998

Skup
The 13th International Workshop on Semantic Evaluation (SemEval-2019)

Mjesto i datum
Minneapolis (MN), Sjedinjene Američke Države, 06.06.2019. - 07.06.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Hyperpartisan News Detection ; machine learning

Sažetak
In this paper, we demonstrate the system built to solve the SemEval-2019 task 4: Hyperpartisan News Detection (Kiesel et al., 2019), the task of automatically determining whether an article is heavily biased towards one side of the political spectrum. Our system receives an article in its raw, textual form, analyzes it, and predicts with moderate accuracy whether the article is hyperpartisan. The learning model used was primarily trained on a manually prelabeled dataset containing news articles. The system relies on the previously constructed SVM model, available in the Python Scikit-Learn library. We ranked 6th in the competition of 42 teams with an accuracy of 79.1% (the winning team had 82.2%).

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Maja Buljan (autor)

Avatar Url Jan Šnajder (autor)

Poveznice na cjeloviti tekst rada:

www.aclweb.org

Citiraj ovu publikaciju:

Palić, Niko; Vladika, Juraj; Čubelić, Dominik; Lovrenčić, Ivan; Buljan, Maja; Šnajder, Jan
TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection // Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019)
Minneapolis (MN), Sjedinjene Američke Države: Association for Computational Linguistics (ACL), 2019. str. 995-998 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Palić, N., Vladika, J., Čubelić, D., Lovrenčić, I., Buljan, M. & Šnajder, J. (2019) TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection. U: Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019).
@article{article, author = {Pali\'{c}, Niko and Vladika, Juraj and \v{C}ubeli\'{c}, Dominik and Lovren\v{c}i\'{c}, Ivan and Buljan, Maja and \v{S}najder, Jan}, year = {2019}, pages = {995-998}, keywords = {Hyperpartisan News Detection, machine learning}, title = {TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection}, keyword = {Hyperpartisan News Detection, machine learning}, publisher = {Association for Computational Linguistics (ACL)}, publisherplace = {Minneapolis (MN), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Pali\'{c}, Niko and Vladika, Juraj and \v{C}ubeli\'{c}, Dominik and Lovren\v{c}i\'{c}, Ivan and Buljan, Maja and \v{S}najder, Jan}, year = {2019}, pages = {995-998}, keywords = {Hyperpartisan News Detection, machine learning}, title = {TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection}, keyword = {Hyperpartisan News Detection, machine learning}, publisher = {Association for Computational Linguistics (ACL)}, publisherplace = {Minneapolis (MN), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font