Pregled bibliografske jedinice broj: 1124405
Structured prediction models for argumentative claim parsing from text
Structured prediction models for argumentative claim parsing from text // Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 61 (2020), 3; 361-370 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1124405 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Structured prediction models for argumentative claim parsing from text
Autori
Boltužić, Filip ; Šnajder, Jan
Izvornik
Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije (0005-1144) 61
(2020), 3;
361-370
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Opinion mining ; argumentation mining ; natural language processing ; machine learning ; deep learning ; structured prediction
Sažetak
The internet abounds with opinions expressed in text. While a number of natural language pro-cessing techniques have been proposed for opinion analysis from text, most offer only a shallow analysis without providing any insights into reasons supporting the opinions. In online discussions, however, opinions are typically expressed as arguments, consisting of a set of claims endowed with internal semantic structure amenable to deeper analysis. In this article, we introduce the task of argumentative claim parsing (ACP), which aims at extracting semantic structures of claims from argumentative text. The task is split into two subtasks: claim segmentation and claim structuring. We present a new dataset on two discussion topics with claims manually annotated for both subtasks. Inspired by structured prediction approaches, we propose a number of supervised machine learning models for the ACP task, including deep learning, chain classifier, and joint learning models. Our experiments reveal that claim segmentation is a relatively feasible task, with the best-performing model achieving up to 0.37 and 0.79 exact and lenient macro-averaged F1-score, respectively. Claim structuring, however, proved to be a more challenging task, with the best-performing models achieving at most 0.08 macro-averaged F1-score.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Jan Šnajder
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus