Pregled bibliografske jedinice broj: 1124320
Inequalities involving operator superquadratic functions
Inequalities involving operator superquadratic functions // Filomat, 35 (2021), 9; 3151-3165 doi:10.2298/FIL2109151M (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1124320 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Inequalities involving operator superquadratic
functions
Autori
Mićić, Jadranka ; Kian, Mohsen
Izvornik
Filomat (0354-5180) 35
(2021), 9;
3151-3165
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
operator inequality ; operator superquadratic function ; operator convex function ; Jensen operator inequality ; quasi-arithmetic operator mean
Sažetak
In this paper, related to the well-known operator convex functions, we study a class of operator functions, the operator superquadratic functions. We present some Jensen-type operator inequalities for these functions. In particular, we show that $f:[0, \infty)\to\mathbb{; ; R}; ; $ is an operator midpoint superquadratic function if and only if $ f\left(C^*AC\right)\leq C^*f(A)C- f\left(\sqrt{; ; C^*A^2C-(C^*AC)^2}; ; \right)$ holds for every positive operator $A\in\mathcal{; ; B}; ; (\mathcal{; ; H}; ; )^+$ and every contraction $C$. As an application, some inequalities for quasi- arithmetic operator means are given.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Profili:
Jadranka Mićić Hot
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus