Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1124103

Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study


Ahmad, Mahmood; Hu, Ji-Lei; Hadzima-Nyarko, Marijana; Ahmad, Feezan; Tang, Xiao-Wei; Rahman, Zia Ur; Nawaz, Ahsan; Abrar, Muhammad
Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study // Symmetry, 13 (2021), 4; 632, 18 doi:10.3390/sym13040632 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1124103 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study

Autori
Ahmad, Mahmood ; Hu, Ji-Lei ; Hadzima-Nyarko, Marijana ; Ahmad, Feezan ; Tang, Xiao-Wei ; Rahman, Zia Ur ; Nawaz, Ahsan ; Abrar, Muhammad

Izvornik
Symmetry (2073-8994) 13 (2021), 4; 632, 18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
rockburst hazard prediction ; risk assessment ; random tree ; J48 algorithm ; machine learning

Sažetak
Rockburst is a complex phenomenon of dynamic instability in the underground excavation of rock. Owing to the complex and unclear rockburst mechanism, it is difficult to accurately predict and reasonably assess the rockburst potential. With the increasing availability of case histories from rock engineering and the advancement of data science, the data mining algorithms provide a good way to predict complex phenomena, like rockburst potential. This paper investigates the potential of J48 and random tree algorithms to predict the rockburst classification ranks using 165 cases, with four parameters, namely maximum tangential stress of surrounding rock, uniaxial compressive strength, uniaxial tensile strength, and strain energy storage index. A comparison of developed models’ performances reveals that the random tree gives more reliable predictions than J48 and other empirical models (Russenes criterion, rock brittleness coefficient criterion, and artificial neural networks). Similar comparisons with convolutional neural network resulted at par performance in modeling the rockburst hazard data.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo



POVEZANOST RADA


Ustanove:
Građevinski i arhitektonski fakultet Osijek

Profili:

Avatar Url Marijana Hadzima-Nyarko (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Ahmad, Mahmood; Hu, Ji-Lei; Hadzima-Nyarko, Marijana; Ahmad, Feezan; Tang, Xiao-Wei; Rahman, Zia Ur; Nawaz, Ahsan; Abrar, Muhammad
Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study // Symmetry, 13 (2021), 4; 632, 18 doi:10.3390/sym13040632 (međunarodna recenzija, članak, znanstveni)
Ahmad, M., Hu, J., Hadzima-Nyarko, M., Ahmad, F., Tang, X., Rahman, Z., Nawaz, A. & Abrar, M. (2021) Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study. Symmetry, 13 (4), 632, 18 doi:10.3390/sym13040632.
@article{article, author = {Ahmad, Mahmood and Hu, Ji-Lei and Hadzima-Nyarko, Marijana and Ahmad, Feezan and Tang, Xiao-Wei and Rahman, Zia Ur and Nawaz, Ahsan and Abrar, Muhammad}, year = {2021}, pages = {18}, DOI = {10.3390/sym13040632}, chapter = {632}, keywords = {rockburst hazard prediction, risk assessment, random tree, J48 algorithm, machine learning}, journal = {Symmetry}, doi = {10.3390/sym13040632}, volume = {13}, number = {4}, issn = {2073-8994}, title = {Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study}, keyword = {rockburst hazard prediction, risk assessment, random tree, J48 algorithm, machine learning}, chapternumber = {632} }
@article{article, author = {Ahmad, Mahmood and Hu, Ji-Lei and Hadzima-Nyarko, Marijana and Ahmad, Feezan and Tang, Xiao-Wei and Rahman, Zia Ur and Nawaz, Ahsan and Abrar, Muhammad}, year = {2021}, pages = {18}, DOI = {10.3390/sym13040632}, chapter = {632}, keywords = {rockburst hazard prediction, risk assessment, random tree, J48 algorithm, machine learning}, journal = {Symmetry}, doi = {10.3390/sym13040632}, volume = {13}, number = {4}, issn = {2073-8994}, title = {Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study}, keyword = {rockburst hazard prediction, risk assessment, random tree, J48 algorithm, machine learning}, chapternumber = {632} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font