Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1123575

Clustering of the Anomalous Spatiotemporal Traffic Patterns Using Tensor Decomposition Method


Tišljarić, Leo; Carić, Tonči
Clustering of the Anomalous Spatiotemporal Traffic Patterns Using Tensor Decomposition Method // The 3rd Symposium on Management of Future Motorway and Urban Traffic Systems
Luksemburg, 2020. str. 1-5 (predavanje, međunarodna recenzija, prošireni sažetak, znanstveni)


CROSBI ID: 1123575 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Clustering of the Anomalous Spatiotemporal Traffic Patterns Using Tensor Decomposition Method

Autori
Tišljarić, Leo ; Carić, Tonči

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, znanstveni

Skup
The 3rd Symposium on Management of Future Motorway and Urban Traffic Systems

Mjesto i datum
Luksemburg, 06.06.2020. - 08.06.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
clustering ; non-negative tensor decomposition ; traffic anomaly ; sparse gnss data ; speed transition matrix

Sažetak
Tensor-based models emerged only recently in the field of traffic data analysis. They outperform other data models because they can simultaneously capture both spatial and temporal components of the observed traffic data. In this paper, the Non-negative Tensor Decomposition (NTD) the method is used to extract traffic patterns in the form of Speed Transition Matrices (STM). The traffic pattern anomaly is estimated using Kullback–Leibler Divergence (KLD) between the observed traffic patterns and the average traffic pattern. Anomalous traffic patterns are then clustered using Agglomerative Clustering (AC), regarding its temporal components. Experiments were conducted on the large sparse Floating Car Data (FCD) for the most relevant road segments in the City of Zagreb, Croatia. Results show that the method was able to detect and cluster the most anomalous spatiotemporal traffic patterns, representing the traffic on the observed road segments. Valuable traffic insights can be extracted by using the proposed method, including the location and the cause of traffic anomalies. Therefore, such traffic information can be used in routing applications and urban traffic planning.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Leo Tišljarić (autor)

Avatar Url Tonči Carić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Tišljarić, Leo; Carić, Tonči
Clustering of the Anomalous Spatiotemporal Traffic Patterns Using Tensor Decomposition Method // The 3rd Symposium on Management of Future Motorway and Urban Traffic Systems
Luksemburg, 2020. str. 1-5 (predavanje, međunarodna recenzija, prošireni sažetak, znanstveni)
Tišljarić, L. & Carić, T. (2020) Clustering of the Anomalous Spatiotemporal Traffic Patterns Using Tensor Decomposition Method. U: The 3rd Symposium on Management of Future Motorway and Urban Traffic Systems.
@article{article, author = {Ti\v{s}ljari\'{c}, Leo and Cari\'{c}, Ton\v{c}i}, year = {2020}, pages = {1-5}, keywords = {clustering, non-negative tensor decomposition, traffic anomaly, sparse gnss data, speed transition matrix}, title = {Clustering of the Anomalous Spatiotemporal Traffic Patterns Using Tensor Decomposition Method}, keyword = {clustering, non-negative tensor decomposition, traffic anomaly, sparse gnss data, speed transition matrix}, publisherplace = {Luksemburg} }
@article{article, author = {Ti\v{s}ljari\'{c}, Leo and Cari\'{c}, Ton\v{c}i}, year = {2020}, pages = {1-5}, keywords = {clustering, non-negative tensor decomposition, traffic anomaly, sparse gnss data, speed transition matrix}, title = {Clustering of the Anomalous Spatiotemporal Traffic Patterns Using Tensor Decomposition Method}, keyword = {clustering, non-negative tensor decomposition, traffic anomaly, sparse gnss data, speed transition matrix}, publisherplace = {Luksemburg} }




Contrast
Increase Font
Decrease Font
Dyslexic Font