Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1123460

Predicting Seagoing Ship Energy Efficiency from the Operational Data


Vorkapić, Aleksandar; Radonja, Radoslav; Martinčić-Ipšić, Sanda
Predicting Seagoing Ship Energy Efficiency from the Operational Data // Sensors, 21 (2021), 8; 2832, 18 doi:10.3390/s21082832 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1123460 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Predicting Seagoing Ship Energy Efficiency from the Operational Data

Autori
Vorkapić, Aleksandar ; Radonja, Radoslav ; Martinčić-Ipšić, Sanda

Izvornik
Sensors (1424-8220) 21 (2021), 8; 2832, 18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
ship operational performance ; energy-efficient shipping ; data mining ; machine learning ; linear regression ; multilayer perceptron ; support vector machine ; random forest

Sažetak
This paper presents the application of machine learning (ML) methods in setting up a model with the aim of predicting the energy efficiency of seagoing ships in the case of a vessel for the transport of liquefied petroleum gas (LPG). The ML algorithm is learned from shipboard automation system measurement data, noon logbook reports, and related meteorological and oceanographic data. The model is tested with generalized linear model (GLM) regression, multilayer preceptor (MLP), support vector machine (SVM), and random forest (RF). Upon verification of modeling framework and analyzing the results to improve the prediction accuracy, the best numeric prediction algorithm is selected based on standard evaluation metrics for regression, i.e., primarily root mean square error (RMSE) and relative absolute error (RAE). Experimental results show that, by taking an adequate combination and processing of relevant measurement data, RF exhibits the lowest RMSE of 17.2632 and RAE 2.304%. Furthermore, this paper elaborates the selection of measurement data, the analysis of input parameters, and their significance in building the prediction model and selection of suitable output variables by the ship’s energy efficiency management plan (SEEMP). In addition, discretization was introduced to allow the end user to interpret the prediction results, placing them in the context of the actual ship operations. The results presented in this research can assist in setting up a decision support system whenever energy consumption savings in a marine transport are at stake.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Tehnologija prometa i transport, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
NadSve-Sveučilište u Rijeci-uniri-drustv-18-20 - Izlučivanje ključnih riječi i sažimanje tekstova na temelju reprezentacije u mrežama jezika-LangNet (LangNet) (Martinčić-Ipšić, Sanda, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci za 2018. godinu - projekti iskusnih znanstvenika i umjetnika) ( CroRIS)

Ustanove:
Pomorski fakultet, Rijeka,
Fakultet informatike i digitalnih tehnologija, Rijeka

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Vorkapić, Aleksandar; Radonja, Radoslav; Martinčić-Ipšić, Sanda
Predicting Seagoing Ship Energy Efficiency from the Operational Data // Sensors, 21 (2021), 8; 2832, 18 doi:10.3390/s21082832 (međunarodna recenzija, članak, znanstveni)
Vorkapić, A., Radonja, R. & Martinčić-Ipšić, S. (2021) Predicting Seagoing Ship Energy Efficiency from the Operational Data. Sensors, 21 (8), 2832, 18 doi:10.3390/s21082832.
@article{article, author = {Vorkapi\'{c}, Aleksandar and Radonja, Radoslav and Martin\v{c}i\'{c}-Ip\v{s}i\'{c}, Sanda}, year = {2021}, pages = {18}, DOI = {10.3390/s21082832}, chapter = {2832}, keywords = {ship operational performance, energy-efficient shipping, data mining, machine learning, linear regression, multilayer perceptron, support vector machine, random forest}, journal = {Sensors}, doi = {10.3390/s21082832}, volume = {21}, number = {8}, issn = {1424-8220}, title = {Predicting Seagoing Ship Energy Efficiency from the Operational Data}, keyword = {ship operational performance, energy-efficient shipping, data mining, machine learning, linear regression, multilayer perceptron, support vector machine, random forest}, chapternumber = {2832} }
@article{article, author = {Vorkapi\'{c}, Aleksandar and Radonja, Radoslav and Martin\v{c}i\'{c}-Ip\v{s}i\'{c}, Sanda}, year = {2021}, pages = {18}, DOI = {10.3390/s21082832}, chapter = {2832}, keywords = {ship operational performance, energy-efficient shipping, data mining, machine learning, linear regression, multilayer perceptron, support vector machine, random forest}, journal = {Sensors}, doi = {10.3390/s21082832}, volume = {21}, number = {8}, issn = {1424-8220}, title = {Predicting Seagoing Ship Energy Efficiency from the Operational Data}, keyword = {ship operational performance, energy-efficient shipping, data mining, machine learning, linear regression, multilayer perceptron, support vector machine, random forest}, chapternumber = {2832} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka::


  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font