Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1123403

Prediction of Surface Roughness and Power in Turning Process Using Response Surface Method and ANN


Aljinović, Amanda; Bilić, Boženko; Gjeldum, Nikola; Mladineo, Marko
Prediction of Surface Roughness and Power in Turning Process Using Response Surface Method and ANN // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 28 (2021), 2; 456-464 doi:10.17559/TV-20190522104029 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1123403 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Prediction of Surface Roughness and Power in Turning Process Using Response Surface Method and ANN

Autori
Aljinović, Amanda ; Bilić, Boženko ; Gjeldum, Nikola ; Mladineo, Marko

Izvornik
Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku (1330-3651) 28 (2021), 2; 456-464

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial neural network (ANN) ; power ; response surface method (RSM) ; surface roughness

Sažetak
This paper examines the influence of three cutting parameters (cutting speed, cutting depth and feed rate) on surface roughness and power in the longitudinal turning process of aluminium alloy. For the analysis of data gathered by experiments, two methods for prediction of responses were employed, namely Response Surface Methodology (RSM) and Artificial Neural Network (ANN). The research has shown that the ANN gives a better prediction of surface roughness than the RSM. In the modelling of the power, the average error value obtained by the ANN does not differ significantly from its value obtained by the RSM. This research is conducted to reveal the rigidity of the machine tool in order to select an appropriate spindle motor for retrofit purpose. The unexpected surface roughness and the error between the experimental and predicted values show that the obtained models are, in most cases, not adequate to predict surface roughness when the power is greater than a given limit. Therefore, the servo motor with smaller power than the original motor is selected which is cost- effective and it will not cause inappropriate strong vibrations that lead to the unexpected surface roughness and excessive noise inside the Learning Factory environment in which the machine tool is used.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

Aljinović, Amanda; Bilić, Boženko; Gjeldum, Nikola; Mladineo, Marko
Prediction of Surface Roughness and Power in Turning Process Using Response Surface Method and ANN // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 28 (2021), 2; 456-464 doi:10.17559/TV-20190522104029 (međunarodna recenzija, članak, znanstveni)
Aljinović, A., Bilić, B., Gjeldum, N. & Mladineo, M. (2021) Prediction of Surface Roughness and Power in Turning Process Using Response Surface Method and ANN. Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 28 (2), 456-464 doi:10.17559/TV-20190522104029.
@article{article, author = {Aljinovi\'{c}, Amanda and Bili\'{c}, Bo\v{z}enko and Gjeldum, Nikola and Mladineo, Marko}, year = {2021}, pages = {456-464}, DOI = {10.17559/TV-20190522104029}, keywords = {artificial neural network (ANN), power, response surface method (RSM), surface roughness}, journal = {Tehni\v{c}ki vjesnik : znanstveno-stru\v{c}ni \v{c}asopis tehni\v{c}kih fakulteta Sveu\v{c}ili\v{s}ta u Osijeku}, doi = {10.17559/TV-20190522104029}, volume = {28}, number = {2}, issn = {1330-3651}, title = {Prediction of Surface Roughness and Power in Turning Process Using Response Surface Method and ANN}, keyword = {artificial neural network (ANN), power, response surface method (RSM), surface roughness} }
@article{article, author = {Aljinovi\'{c}, Amanda and Bili\'{c}, Bo\v{z}enko and Gjeldum, Nikola and Mladineo, Marko}, year = {2021}, pages = {456-464}, DOI = {10.17559/TV-20190522104029}, keywords = {artificial neural network (ANN), power, response surface method (RSM), surface roughness}, journal = {Tehni\v{c}ki vjesnik : znanstveno-stru\v{c}ni \v{c}asopis tehni\v{c}kih fakulteta Sveu\v{c}ili\v{s}ta u Osijeku}, doi = {10.17559/TV-20190522104029}, volume = {28}, number = {2}, issn = {1330-3651}, title = {Prediction of Surface Roughness and Power in Turning Process Using Response Surface Method and ANN}, keyword = {artificial neural network (ANN), power, response surface method (RSM), surface roughness} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font