Pregled bibliografske jedinice broj: 1123003
Cone penetration data classification by Bayesian inversion with a Hidden Markov model
Cone penetration data classification by Bayesian inversion with a Hidden Markov model // Journal of Physics: Conference Series, 1104 (2018), 1-15 doi:10.1088/1742-6596/1104/1/012015 (međunarodna recenzija, članak, ostalo)
CROSBI ID: 1123003 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Cone penetration data classification by Bayesian
inversion with a Hidden Markov model
Autori
Krogstad, A ; Đepina, I ; Omre, H
Izvornik
Journal of Physics: Conference Series (1742-6588) 1104
(2018);
1-15
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
CPT, Bayes ; Inversion ; HMM ; Hidden ; Markov
Sažetak
This study examines the application of the Hidden Markov model (HMM) to the soil classification based on Cone Penetration Test (CPT) measurements. The HMM is formulated in the Bayesian framework and composed of a Markov chain prior and a Gaussian likelihood model. The application of the Bayesian framework is considered as suitable because it allows for the integration of different sources of information commonly available in a CPT-based soil classification. The occurrence of different soil classes along a CPT profile is modeled with the Markov chain, while the Gaussian likelihood model establishes a relation between the different soil classes and CPT measurements. Preliminary performance of the HMM is examined on the classification of CPT measurements from the Sheringham Shoal Offshore Wind Farm.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo
POVEZANOST RADA
Projekti:
EK-EFRR-KK.01.1.1.02.0027 - Implementacijom suvremene znanstvenoistraživačke infrastrukture na FGAG Split do pametne specijalizacije u zelenoj i energetski učinkovitoj gradnji (Jajac, Nikša, EK - KK.01.1.1.02) ( CroRIS)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus