Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1122999

Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests


Godoy, Cristian; Đepina, Ivan; Thakur, Vikas
Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests // Journal of Zhejiang University-SCIENCE A, 21 (2020), 6; 445-461 doi:10.1631/jzus.a1900556 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1122999 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests

Autori
Godoy, Cristian ; Đepina, Ivan ; Thakur, Vikas

Izvornik
Journal of Zhejiang University-SCIENCE A (1673-565X) 21 (2020), 6; 445-461

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Machine learning ; Classification ; Quick clays ; Sensitive clays

Sažetak
Geotechnical classification is vital for site characterization and geotechnical design. Field tests such as the cone penetration test with pore water pressure measurement (CPTu) are widespread because they represent a faster and cheaper alternative for sample recovery and testing. However, classification schemes based on CPTu measurements are fairly generic because they represent a wide variety of soil conditions and, occasionally, they may fail when used in special soil types like sensitive or quick clays. Quick and highly sensitive clay soils in Norway have unique conditions that make them difficult to be identified through general classification charts. Therefore, new approaches to address this task are required. The following study applies machine learning methods such as logistic regression, Naive Bayes, and hidden Markov models to classify quick and highly sensitive clays at two sites in Norway based on normalized CPTu measurements. Results showed a considerable increase in the classification accuracy despite limited training sets.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo



POVEZANOST RADA


Projekti:
EK-EFRR-KK.01.1.1.02.0027 - Implementacijom suvremene znanstvenoistraživačke infrastrukture na FGAG Split do pametne specijalizacije u zelenoj i energetski učinkovitoj gradnji (Jajac, Nikša, EK - KK.01.1.1.02) ( CroRIS)

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split

Profili:

Avatar Url Ivan Đepina (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Godoy, Cristian; Đepina, Ivan; Thakur, Vikas
Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests // Journal of Zhejiang University-SCIENCE A, 21 (2020), 6; 445-461 doi:10.1631/jzus.a1900556 (međunarodna recenzija, članak, znanstveni)
Godoy, C., Đepina, I. & Thakur, V. (2020) Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests. Journal of Zhejiang University-SCIENCE A, 21 (6), 445-461 doi:10.1631/jzus.a1900556.
@article{article, author = {Godoy, Cristian and \DJepina, Ivan and Thakur, Vikas}, year = {2020}, pages = {445-461}, DOI = {10.1631/jzus.a1900556}, keywords = {Machine learning, Classification, Quick clays, Sensitive clays}, journal = {Journal of Zhejiang University-SCIENCE A}, doi = {10.1631/jzus.a1900556}, volume = {21}, number = {6}, issn = {1673-565X}, title = {Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests}, keyword = {Machine learning, Classification, Quick clays, Sensitive clays} }
@article{article, author = {Godoy, Cristian and \DJepina, Ivan and Thakur, Vikas}, year = {2020}, pages = {445-461}, DOI = {10.1631/jzus.a1900556}, keywords = {Machine learning, Classification, Quick clays, Sensitive clays}, journal = {Journal of Zhejiang University-SCIENCE A}, doi = {10.1631/jzus.a1900556}, volume = {21}, number = {6}, issn = {1673-565X}, title = {Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests}, keyword = {Machine learning, Classification, Quick clays, Sensitive clays} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font