Pregled bibliografske jedinice broj: 1122999
Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests
Application of machine learning to the identification of quick and highly sensitive clays from cone penetration tests // Journal of Zhejiang University-SCIENCE A, 21 (2020), 6; 445-461 doi:10.1631/jzus.a1900556 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1122999 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of machine learning to the
identification of quick and highly sensitive
clays from cone penetration tests
Autori
Godoy, Cristian ; Đepina, Ivan ; Thakur, Vikas
Izvornik
Journal of Zhejiang University-SCIENCE A (1673-565X) 21
(2020), 6;
445-461
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Machine learning ; Classification ; Quick clays ; Sensitive clays
Sažetak
Geotechnical classification is vital for site characterization and geotechnical design. Field tests such as the cone penetration test with pore water pressure measurement (CPTu) are widespread because they represent a faster and cheaper alternative for sample recovery and testing. However, classification schemes based on CPTu measurements are fairly generic because they represent a wide variety of soil conditions and, occasionally, they may fail when used in special soil types like sensitive or quick clays. Quick and highly sensitive clay soils in Norway have unique conditions that make them difficult to be identified through general classification charts. Therefore, new approaches to address this task are required. The following study applies machine learning methods such as logistic regression, Naive Bayes, and hidden Markov models to classify quick and highly sensitive clays at two sites in Norway based on normalized CPTu measurements. Results showed a considerable increase in the classification accuracy despite limited training sets.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo
POVEZANOST RADA
Projekti:
EK-EFRR-KK.01.1.1.02.0027 - Implementacijom suvremene znanstvenoistraživačke infrastrukture na FGAG Split do pametne specijalizacije u zelenoj i energetski učinkovitoj gradnji (Jajac, Nikša, EK - KK.01.1.1.02) ( CroRIS)
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Profili:
Ivan Đepina
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus