Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1122996

Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models.


Đepina, Ivan; Oguz, Emir Ahmet; Thakur, Vikas
Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models. // Computers and Geotechnics, 125 (2020), 125; 1-20 doi:10.1016/j.compgeo.2020.103660 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1122996 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models.

Autori
Đepina, Ivan ; Oguz, Emir Ahmet ; Thakur, Vikas

Izvornik
Computers and Geotechnics (0266-352X) 125 (2020), 125; 1-20

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Landslide ; Rainfall ; Physical-based ; Calibration ; Statistics ; Bayes ; Hazard

Sažetak
This study presents a novel Bayesian framework for statistical calibration of spatially distributed physical-based landslide prediction models. The calibration process is formulated in a statistical setting with the model parameters simulated as spatially variable with random fields and the model calibration defined within the Bayesian framework. The implementation of such calibration process is challenging due to large numbers of calibration parameters and high- dimensional likelihood functions, which are central in establishing a relation between observations and the corresponding model predictions. The former challenge was resolved by reformulating the Bayesian updating problem as an equivalent reliability problem and solving it with efficient reliability methods. The latter challenge was resolved by developing novel lower- dimensional approximate likelihood formulations, suitable for the interpretation of landslide initiation zones, based on the Approximate Bayesian Computation method. The novelties of the proposed approach stem from describing landslide model parameters as spatially variable, development of a statistical framework to calibrate landslide prediction models, and introduction of approximate likelihood formulations.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo



POVEZANOST RADA


Projekti:
EK-EFRR-KK.01.1.1.02.0027 - Implementacijom suvremene znanstvenoistraživačke infrastrukture na FGAG Split do pametne specijalizacije u zelenoj i energetski učinkovitoj gradnji (Jajac, Nikša, EK - KK.01.1.1.02) ( CroRIS)

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split

Profili:

Avatar Url Ivan Đepina (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Đepina, Ivan; Oguz, Emir Ahmet; Thakur, Vikas
Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models. // Computers and Geotechnics, 125 (2020), 125; 1-20 doi:10.1016/j.compgeo.2020.103660 (međunarodna recenzija, članak, znanstveni)
Đepina, I., Oguz, E. & Thakur, V. (2020) Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models.. Computers and Geotechnics, 125 (125), 1-20 doi:10.1016/j.compgeo.2020.103660.
@article{article, author = {\DJepina, Ivan and Oguz, Emir Ahmet and Thakur, Vikas}, year = {2020}, pages = {1-20}, DOI = {10.1016/j.compgeo.2020.103660}, keywords = {Landslide, Rainfall, Physical-based, Calibration, Statistics, Bayes, Hazard}, journal = {Computers and Geotechnics}, doi = {10.1016/j.compgeo.2020.103660}, volume = {125}, number = {125}, issn = {0266-352X}, title = {Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models.}, keyword = {Landslide, Rainfall, Physical-based, Calibration, Statistics, Bayes, Hazard} }
@article{article, author = {\DJepina, Ivan and Oguz, Emir Ahmet and Thakur, Vikas}, year = {2020}, pages = {1-20}, DOI = {10.1016/j.compgeo.2020.103660}, keywords = {Landslide, Rainfall, Physical-based, Calibration, Statistics, Bayes, Hazard}, journal = {Computers and Geotechnics}, doi = {10.1016/j.compgeo.2020.103660}, volume = {125}, number = {125}, issn = {0266-352X}, title = {Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models.}, keyword = {Landslide, Rainfall, Physical-based, Calibration, Statistics, Bayes, Hazard} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font