Pregled bibliografske jedinice broj: 1121490
Jensen-Steffensen inequality: old and new
Jensen-Steffensen inequality: old and new // Conference on Inequalities and Applications 2016 / Gilányi, Attila ; Boros, Zoltán, Bessenyei, Mihály (ur.).
Deberecen: University of Debrecen, 2016. str. 33-33 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1121490 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Jensen-Steffensen inequality: old and new
Autori
Klaričić Bakula, Milica
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Conference on Inequalities and Applications 2016
/ Gilányi, Attila ; Boros, Zoltán, Bessenyei, Mihály - Deberecen : University of Debrecen, 2016, 33-33
Skup
Conference on Inequalities and Applications 2016
Mjesto i datum
Hajdúszoboszló, Mađarska, 28.08.2016. - 03.09.2016
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Jensen-Steffensen inequality, generalized convexity
Sažetak
{;Let $I$ be an interval in $\mathbb{;R};$ and $f:I\rightarrow \mathbb{;R};$ a convex function on $I$.\ If $\boldsymbol{;\xi };=\left( \xi _{;1};, \cdots , \xi _{;m};\right) $ is any $m$-tuple in $I^{;m};$ and $\boldsymbol{;p};=\left( p_{;1};, \cdots , p_{;m};\right) $ any nonnegative $m$-tuple such that $% \sum_{;i=1};^{;m};p_{;i};>0$, then the well known Jensen's inequality \begin{;equation}; f\left( \frac{;1};{;P_{;m};};\sum_{;i=1};^{;m};p_{;i};\xi _{;i};\right) \leq \frac{;1};{;P_{;m};% };\sum_{;i=1};^{;m};p_{;i};f\left( \xi _{;i};\right) \label{;jen}; \end{;equation};% holds, where $P_{;m};=\sum_{;i=1};^{;m};p_{;i};$ . It is known that the assumption \textquotedblright $\boldsymbol{;p};$ is a nonnegative $m$-tuple\textquotedblright\ can be relaxed at the expense of more restrictions on the $m$-tuple $\boldsymbol{;\xi };$. Namely, if $% \boldsymbol{;p};$ is a real $m$-tuple such that \begin{;equation}; 0\leq P_{;j};\leq P_{;m};\text{; };, \text{; };j=1, \cdots , m\text{; }; ; \ \ \ \ P_{;m};>0% \text{; };, \label{;je-st}; \end{;equation};% where $P_{;j};:=\sum_{;i=1};^{;j};p_{;i};$ , then for any monotonic $m$-tuple $% \boldsymbol{;\xi };$\ (increasing or decreasing) in $I^{;m};$ we get \[ \overline{;\xi };=\frac{;1}; {;P_{;m};};\sum_{;i=1};^{;m};p_{;i};\xi _{;i};\in I\text{; };, \]% and for any function $f$ convex on $I, $ $\left( \ref{;jen};\right) $ still holds. Inequality $\left( \ref{;jen};\right) $ considered under conditions $% \left( \ref{;je-st};\right) $ is known as the Jensen-Steffensen inequality for convex functions. We can say that the Jensen- Steffensen inequality is "the ugly sister" of Jensen's inequality: not much admired and usually "not invited to the party". Our goal here is to show that "she" has many hidden beauties and that "she" can proudly walk hand in hand with her well known sister.};
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Split
Profili:
Milica Klaričić-Bakula
(autor)