Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1121490

Jensen-Steffensen inequality: old and new


Klaričić Bakula, Milica
Jensen-Steffensen inequality: old and new // Conference on Inequalities and Applications 2016 / Gilányi, Attila ; Boros, Zoltán, Bessenyei, Mihály (ur.).
Deberecen: University of Debrecen, 2016. str. 33-33 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1121490 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Jensen-Steffensen inequality: old and new

Autori
Klaričić Bakula, Milica

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Conference on Inequalities and Applications 2016 / Gilányi, Attila ; Boros, Zoltán, Bessenyei, Mihály - Deberecen : University of Debrecen, 2016, 33-33

Skup
Conference on Inequalities and Applications 2016

Mjesto i datum
Hajdúszoboszló, Mađarska, 28.08.2016. - 03.09.2016

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Jensen-Steffensen inequality, generalized convexity

Sažetak
{;Let $I$ be an interval in $\mathbb{;R};$ and $f:I\rightarrow \mathbb{;R};$ a convex function on $I$.\ If $\boldsymbol{;\xi };=\left( \xi _{;1};, \cdots , \xi _{;m};\right) $ is any $m$-tuple in $I^{;m};$ and $\boldsymbol{;p};=\left( p_{;1};, \cdots , p_{;m};\right) $ any nonnegative $m$-tuple such that $% \sum_{;i=1};^{;m};p_{;i};>0$, then the well known Jensen's inequality \begin{;equation}; f\left( \frac{;1};{;P_{;m};};\sum_{;i=1};^{;m};p_{;i};\xi _{;i};\right) \leq \frac{;1};{;P_{;m};% };\sum_{;i=1};^{;m};p_{;i};f\left( \xi _{;i};\right) \label{;jen}; \end{;equation};% holds, where $P_{;m};=\sum_{;i=1};^{;m};p_{;i};$ . It is known that the assumption \textquotedblright $\boldsymbol{;p};$ is a nonnegative $m$-tuple\textquotedblright\ can be relaxed at the expense of more restrictions on the $m$-tuple $\boldsymbol{;\xi };$. Namely, if $% \boldsymbol{;p};$ is a real $m$-tuple such that \begin{;equation}; 0\leq P_{;j};\leq P_{;m};\text{; };, \text{; };j=1, \cdots , m\text{; }; ; \ \ \ \ P_{;m};>0% \text{; };, \label{;je-st}; \end{;equation};% where $P_{;j};:=\sum_{;i=1};^{;j};p_{;i};$ , then for any monotonic $m$-tuple $% \boldsymbol{;\xi };$\ (increasing or decreasing) in $I^{;m};$ we get \[ \overline{;\xi };=\frac{;1}; {;P_{;m};};\sum_{;i=1};^{;m};p_{;i};\xi _{;i};\in I\text{; };, \]% and for any function $f$ convex on $I, $ $\left( \ref{;jen};\right) $ still holds. Inequality $\left( \ref{;jen};\right) $ considered under conditions $% \left( \ref{;je-st};\right) $ is known as the Jensen-Steffensen inequality for convex functions. We can say that the Jensen- Steffensen inequality is "the ugly sister" of Jensen's inequality: not much admired and usually "not invited to the party". Our goal here is to show that "she" has many hidden beauties and that "she" can proudly walk hand in hand with her well known sister.};

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Milica Klaričić-Bakula (autor)


Citiraj ovu publikaciju:

Klaričić Bakula, Milica
Jensen-Steffensen inequality: old and new // Conference on Inequalities and Applications 2016 / Gilányi, Attila ; Boros, Zoltán, Bessenyei, Mihály (ur.).
Deberecen: University of Debrecen, 2016. str. 33-33 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
Klaričić Bakula, M. (2016) Jensen-Steffensen inequality: old and new. U: Gilányi, A. & Boros, Zoltán, Bessenyei, Mihály (ur.)Conference on Inequalities and Applications 2016.
@article{article, author = {Klari\v{c}i\'{c} Bakula, Milica}, year = {2016}, pages = {33-33}, keywords = {Jensen-Steffensen inequality, generalized convexity}, title = {Jensen-Steffensen inequality: old and new}, keyword = {Jensen-Steffensen inequality, generalized convexity}, publisher = {University of Debrecen}, publisherplace = {Hajd\'{u}szoboszl\'{o}, Ma\djarska} }
@article{article, author = {Klari\v{c}i\'{c} Bakula, Milica}, year = {2016}, pages = {33-33}, keywords = {Jensen-Steffensen inequality, generalized convexity}, title = {Jensen-Steffensen inequality: old and new}, keyword = {Jensen-Steffensen inequality, generalized convexity}, publisher = {University of Debrecen}, publisherplace = {Hajd\'{u}szoboszl\'{o}, Ma\djarska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font