Pregled bibliografske jedinice broj: 1119797
A comparison between different feature-based methods for ROV vision-based speed estimation
A comparison between different feature-based methods for ROV vision-based speed estimation // IFAC Proceedings Volumes, Volume 45, Issue 5
Porto, Portugal: Elsevier, 2012. str. 325-330 doi:10.3182/20120410-3-pt-4028.00054 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1119797 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A comparison between different feature-based methods
for ROV vision-based speed estimation
Autori
Ferreira, F. ; Veruggio, G. ; Caccia, M. ; Bruzzone, G.
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
IFAC Proceedings Volumes, Volume 45, Issue 5
/ - : Elsevier, 2012, 325-330
Skup
3rd IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles
Mjesto i datum
Porto, Portugal, 10.04.2012. - 12.04.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
ROV navigation ; motion estimation ; SURF ; SIFT ; benchmarking
Sažetak
A comparison study between different state-of-the- art visual approaches for estimating the motion of an underwater Remotely Operated Vehicle (ROV) is performed. The paper compares five different techniques: the template correlation, Speeded Up Robust Features (SURF), Scale Invariant Feature Transform (SIFT), Features from Accelerated Segment Test (FAST) and Center Surround Extrema (CenSurE), all based on feature extraction and matching. All these are implemented on the same free open source library which allows a fair comparison that can establish the best technique (depending on the criteria used). Taking into account previous work where SURF and template correlation techniques were evaluated using a batch of data collected in typical operating conditions with the Romeo ROV, the other techniques are compared using the same data set. In estimating vehicle speed, SURF and SIFT presented noise levels higher but close to template correlation, though SURF and SIFT have more outliers. In terms of computational time, template correlation outperforms all other alternatives by large in some cases.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo