Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1119635

On an Eigenvector-Dependent Nonlinear Eigenvalue Problem from the Perspective of Relative Perturbation Theory


Truhar, Ninoslav; Li, Ren-Cang
On an Eigenvector-Dependent Nonlinear Eigenvalue Problem from the Perspective of Relative Perturbation Theory // Journal of computational and applied mathematics, 395 (2021), 1-20 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1119635 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On an Eigenvector-Dependent Nonlinear Eigenvalue Problem from the Perspective of Relative Perturbation Theory

Autori
Truhar, Ninoslav ; Li, Ren-Cang

Izvornik
Journal of computational and applied mathematics (0377-0427) 395 (2021); 1-20

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Eigenvector-dependent nonlinear eigenvalue problem ; Self-consistent-field iteration ; Relative perturbation theory

Sažetak
We are concerned with the eigenvector-dependent nonlinear eigenvalue problem (NEPv) $H(V)V = V \Lambda$, where $H(V) \in \bbC^{; ; ; ; n \times n}; ; ; ; $ is a Hermitian matrix-valued function of $V \in \bbC^{; ; ; ; n \times k}; ; ; ; $ with orthonormal columns, i.e., $V^{; ; ; ; \HH}; ; ; ; V = I_k$, $k \leq n$ (usually $k \ll n$). Sufficient conditions on the solvability and solution uniqueness of NEPv are obtained, based on the well-known results from the relative perturbation theory. These results are complementary to recent ones in [Cai, Zhang, Bai, and Li, {; ; ; ; \em SIAM J. Matrix Anal. Appl.}; ; ; ; , 39:2 (2018), pp.1360--1382], where, among others, one can find conditions for the solvability and solution uniqueness of NEPv, based on the well-known results from the absolute perturbation theory. Although the absolute perturbation theory is more versatile in applications, there are cases where the relative perturbation theory produces better results.

Izvorni jezik
Engleski

Znanstvena područja
Matematika

Napomena
Prihvaćen za objavljivanje



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Ninoslav Truhar (autor)


Citiraj ovu publikaciju:

Truhar, Ninoslav; Li, Ren-Cang
On an Eigenvector-Dependent Nonlinear Eigenvalue Problem from the Perspective of Relative Perturbation Theory // Journal of computational and applied mathematics, 395 (2021), 1-20 (međunarodna recenzija, članak, znanstveni)
Truhar, N. & Li, R. (2021) On an Eigenvector-Dependent Nonlinear Eigenvalue Problem from the Perspective of Relative Perturbation Theory. Journal of computational and applied mathematics, 395, 1-20.
@article{article, author = {Truhar, Ninoslav and Li, Ren-Cang}, year = {2021}, pages = {1-20}, keywords = {Eigenvector-dependent nonlinear eigenvalue problem, Self-consistent-field iteration, Relative perturbation theory}, journal = {Journal of computational and applied mathematics}, volume = {395}, issn = {0377-0427}, title = {On an Eigenvector-Dependent Nonlinear Eigenvalue Problem from the Perspective of Relative Perturbation Theory}, keyword = {Eigenvector-dependent nonlinear eigenvalue problem, Self-consistent-field iteration, Relative perturbation theory} }
@article{article, author = {Truhar, Ninoslav and Li, Ren-Cang}, year = {2021}, pages = {1-20}, keywords = {Eigenvector-dependent nonlinear eigenvalue problem, Self-consistent-field iteration, Relative perturbation theory}, journal = {Journal of computational and applied mathematics}, volume = {395}, issn = {0377-0427}, title = {On an Eigenvector-Dependent Nonlinear Eigenvalue Problem from the Perspective of Relative Perturbation Theory}, keyword = {Eigenvector-dependent nonlinear eigenvalue problem, Self-consistent-field iteration, Relative perturbation theory} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font