Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1119583

Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization


Kolar, Davor; Lisjak, Dragutin; Pająk, Michał; Gudlin, Mihael
Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization // Sensors, 21 (2021), 7; 2411, 17 doi:10.3390/s21072411 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1119583 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization

Autori
Kolar, Davor ; Lisjak, Dragutin ; Pająk, Michał ; Gudlin, Mihael

Izvornik
Sensors (1424-8220) 21 (2021), 7; 2411, 17

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
rotary machinery ; fault diagnosis ; convolutional neural network ; classification ; hyper-parameters tuning ; bayesian optimization

Sažetak
Intelligent fault diagnosis can be related to applications of machine learning theories to machine fault diagnosis. Although there is a large number of successful examples, there is a gap in the optimization of the hyper-parameters of the machine learning model, which ultimately has a major impact on the performance of the model. Machine learning experts are required to configure a set of hyper-parameter values manually. This work presents a convolutional neural network based data-driven intelligent fault diagnosis technique for rotary machinery which uses model with optimized hyper-parameters and network structure. The proposed technique input raw three axes accelerometer signal as high definition 1-D data into deep learning layers with optimized hyper-parameters. Input is consisted of wide 12, 800 × 1 × 3 vibration signal matrix. Model learning phase includes Bayesian optimization that optimizes hyper-parameters of the convolutional neural network. Finally, by using a Convolutional Neural Network (CNN) model with optimized hyper-parameters, classification in one of the 8 different machine states and 2 rotational speeds can be performed. This study accomplished the effective classification of different rotary machinery states in different rotational speeds using optimized convolutional artificial neural network for classification of raw three axis accelerometer signal input. Overall classification accuracy of 99.94% on evaluation set is obtained with the CNN model based on 19 layers. Additionally, more data are collected on the same machine with altered bearings to test the model for overfitting. Result of classification accuracy of 100% on second evaluation set has been achieved, proving the potential of using the proposed technique.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Mihael Gudlin (autor)

Avatar Url Dragutin Lisjak (autor)

Avatar Url Davor Kolar (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Kolar, Davor; Lisjak, Dragutin; Pająk, Michał; Gudlin, Mihael
Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization // Sensors, 21 (2021), 7; 2411, 17 doi:10.3390/s21072411 (međunarodna recenzija, članak, znanstveni)
Kolar, D., Lisjak, D., Pająk, M. & Gudlin, M. (2021) Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization. Sensors, 21 (7), 2411, 17 doi:10.3390/s21072411.
@article{article, author = {Kolar, Davor and Lisjak, Dragutin and Paj\k{a}k, Micha\l and Gudlin, Mihael}, year = {2021}, pages = {17}, DOI = {10.3390/s21072411}, chapter = {2411}, keywords = {rotary machinery, fault diagnosis, convolutional neural network, classification, hyper-parameters tuning, bayesian optimization}, journal = {Sensors}, doi = {10.3390/s21072411}, volume = {21}, number = {7}, issn = {1424-8220}, title = {Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization}, keyword = {rotary machinery, fault diagnosis, convolutional neural network, classification, hyper-parameters tuning, bayesian optimization}, chapternumber = {2411} }
@article{article, author = {Kolar, Davor and Lisjak, Dragutin and Paj\k{a}k, Micha\l and Gudlin, Mihael}, year = {2021}, pages = {17}, DOI = {10.3390/s21072411}, chapter = {2411}, keywords = {rotary machinery, fault diagnosis, convolutional neural network, classification, hyper-parameters tuning, bayesian optimization}, journal = {Sensors}, doi = {10.3390/s21072411}, volume = {21}, number = {7}, issn = {1424-8220}, title = {Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization}, keyword = {rotary machinery, fault diagnosis, convolutional neural network, classification, hyper-parameters tuning, bayesian optimization}, chapternumber = {2411} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font