Pregled bibliografske jedinice broj: 1117545
Fault Detection in DC Microgrids Using Short-Time Fourier Transform
Fault Detection in DC Microgrids Using Short-Time Fourier Transform // Energies, 14 (2021), 2; 277, 14 doi:10.3390/en14020277 (međunarodna recenzija, članak, ostalo)
CROSBI ID: 1117545 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fault Detection in DC Microgrids Using Short-Time
Fourier Transform
Autori
Grcić, Ivan ; Pandžić, Hrvoje ; Novosel, Damir
Izvornik
Energies (1996-1073) 14
(2021), 2;
277, 14
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
short-time Fourier transform ; intelligent classifiers ; microgrid ; fault detection ; machine learning
Sažetak
Fault detection in microgrids presents a strong technical challenge due to the dynamic operating conditions. Changing the power generation and load impacts the current magnitude and direction, which has an adverse effect on the microgrid protection scheme. To address this problem, this paper addresses a field-transform-based fault detection method immune to the microgrid conditions. The faults are simulated via a Matlab/Simulink model of the grid-connected photovoltaics-based DC microgrid with battery energy storage. Short- time Fourier transform is applied to the fault time signal to obtain a frequency spectrum. Selected spectrum features are then provided to a number of intelligent classifiers. The classifiers’ scores were evaluated using the F1-score metric. Most classifiers proved to be reliable as their performance score was above 90%.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus