Pregled bibliografske jedinice broj: 1117496
Non-Debye relaxations: Smeared time evolution, memory effects, and the Laplace exponents
Non-Debye relaxations: Smeared time evolution, memory effects, and the Laplace exponents // Communications in Nonlinear Science and Numerical Simulation, 99 (2021), 105837, 11 doi:10.1016/j.cnsns.2021.105837 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1117496 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Non-Debye relaxations: Smeared time evolution, memory effects, and the Laplace exponents
Autori
Górska, Katarzyna ; Anrdzej, Horzela ; Poganj, Tibor
Izvornik
Communications in Nonlinear Science and Numerical Simulation (1007-5704) 99
(2021);
105837, 11
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Non-Debye relaxation ; memory functions ; completely monotone and Bernstein functions
Sažetak
The non-Debye, i.e., non-exponential, behavior characterizes a large plethora of dielectric relaxation phenomena. Attempts to find their theoretical explanation are dominated either by considerations rooted in the stochastic processes methodology or by the so-called fractional dynamics based on equations involving fractional derivatives which mimic the non-local time evolution and as such may be interpreted as describing memory effects. Using the recent results coming from the stochastic approach we link memory functions with the Laplace (characteristic) exponents of infinitely divisible probability distributions and show how to relate the latter with experimentally measurable spectral functions characterizing relaxation in the frequency domain. This enables us to incorporate phenomenological knowledge into the evolution laws. To illustrate our approach we consider the standard Havriliak-Negami and Jurlewicz- Weron- Stanislavsky models for which we derive well- defined evolution equations. Merging stochastic and fractional dynamics approaches sheds also new light on the analysis of relaxation phenomena which description needs going beyond using the single evolution pattern. We determine sufficient conditions under which such description is consistent with general requirements of our approach.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Fizika
POVEZANOST RADA
Projekti:
NadSve-Sveučilište u Rijeci-uniri-pr-prirod-19-16 - Stohastičke metode u matematičkoj analizi (Krizmanić, Danijel, NadSve - UNIRI-plus projekti 2018) ( CroRIS)
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus