Pregled bibliografske jedinice broj: 1116108
Advanced Data Analytics in Logistics Demand Forecasting
Advanced Data Analytics in Logistics Demand Forecasting // MIPRO 2021 – Proceedings / Koricic, M. ; Skala, K. ; Car, Z. ; Cicin-Sain M. ; Babic, S. ; Sruk, V. ; Skvorc, D. ; Ribaric, S. ; Jerbic, B. ; Gros, S. ; Vrdoljak, B. ; Mauher, M. ; Tijan, E. ; Katulic, T. ; Petrovic, J. ; Grbac, T. G. (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 1582-1587 doi:10.23919/MIPRO52101.2021.9596820 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1116108 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Advanced Data Analytics in
Logistics Demand Forecasting
Autori
Agatić, Adrijana ; Tijan, Edvard ; Poletan Jugović, Tanja ; Hess, Svjetlana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MIPRO 2021 – Proceedings
/ Koricic, M. ; Skala, K. ; Car, Z. ; Cicin-Sain M. ; Babic, S. ; Sruk, V. ; Skvorc, D. ; Ribaric, S. ; Jerbic, B. ; Gros, S. ; Vrdoljak, B. ; Mauher, M. ; Tijan, E. ; Katulic, T. ; Petrovic, J. ; Grbac, T. G. - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021, 1582-1587
Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
logistics demand forecasting ; Advanced Data Analytics ; Big Data ; Artificial Intelligence ; Machine Learning
Sažetak
The logistics demand forecasting is increasingly influenced by digitalization processes in logistics business. Traditional approach to logistics demand forecasting based on human expertise and statistical assessment is still very present, but the use of Big Data, Artificial Intelligence and Machine Learning becomes more prominent. By using these technologies, logistics demand forecasting becomes not only more reliable but also more agile and self-adjusting, with better insight into changing market conditions in the real-time perspective. In this paper, the Authors research the evolution of Data Analytics in logistics demand forecasting. and provide an insight to the features of Big Data, Artificial Intelligence and Machine Learning used for Advanced Data Analytics in logistics demand forecasting.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tanja Poletan-Jugović
(autor)
Svjetlana Hess
(autor)
Adrijana Agatić
(autor)
Edvard Tijan
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus