Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1115591

Combined machine learning and finite element simulation approach towards personalized model for prognosis of COVID-19 disease development in patients


Blagojević, Anđela; Šušteršič, Tijana; Lorencin, Ivan; Baressi Šegota, Sandi; Milovanović, Dragan; Baskić, Danijela; Baskić, Dejan; Car, Zlatan; Filipović, Nenad
Combined machine learning and finite element simulation approach towards personalized model for prognosis of COVID-19 disease development in patients // EAI Endorsed Transactions on Bioengineering and Bioinformatics, 21 (2021), 2; e6, 10 doi:10.4108/eai.12-3-2021.169028 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1115591 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Combined machine learning and finite element simulation approach towards personalized model for prognosis of COVID-19 disease development in patients

Autori
Blagojević, Anđela ; Šušteršič, Tijana ; Lorencin, Ivan ; Baressi Šegota, Sandi ; Milovanović, Dragan ; Baskić, Danijela ; Baskić, Dejan ; Car, Zlatan ; Filipović, Nenad

Izvornik
EAI Endorsed Transactions on Bioengineering and Bioinformatics (2709-4111) 21 (2021), 2; E6, 10

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
COVID-19 ; machine learning ; personalized model ; U-net ; classification ; predictive models ; finite element simulation

Sažetak
INTRODUCTION: Machine learning algorithms and in silico models for the COVID-19 have been used to classify infectious people and predict their condition in time. OBJECTIVES: This study aims at creating a personalized model that combines machine learning and finite element simulation approach in order to predict development of COVID-19 infection in patients. METHODS: The methodology combines several aspects (1) classification of patients into several classes of clinical condition (2) segmentation of human lungs in X ray images (3) finite element simulation to investigate the spreading of SARS-COV-2 virion in the lungs. RESULTS: The findings show accuracy larger than 90% in all aspects of methodology. FE simulation has revealed that the distribution of airflow in the lung changes in time with the infection. CONCLUSION: The key benefit of our proposed method is that it combines several methods that will be further improved in order to create a truly unique combined methodology for predictive models in patients infected with COVID-19.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti, Biotehnologija, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)



POVEZANOST RADA


Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi eudl.eu

Citiraj ovu publikaciju:

Blagojević, Anđela; Šušteršič, Tijana; Lorencin, Ivan; Baressi Šegota, Sandi; Milovanović, Dragan; Baskić, Danijela; Baskić, Dejan; Car, Zlatan; Filipović, Nenad
Combined machine learning and finite element simulation approach towards personalized model for prognosis of COVID-19 disease development in patients // EAI Endorsed Transactions on Bioengineering and Bioinformatics, 21 (2021), 2; e6, 10 doi:10.4108/eai.12-3-2021.169028 (međunarodna recenzija, članak, znanstveni)
Blagojević, A., Šušteršič, T., Lorencin, I., Baressi Šegota, S., Milovanović, D., Baskić, D., Baskić, D., Car, Z. & Filipović, N. (2021) Combined machine learning and finite element simulation approach towards personalized model for prognosis of COVID-19 disease development in patients. EAI Endorsed Transactions on Bioengineering and Bioinformatics, 21 (2), e6, 10 doi:10.4108/eai.12-3-2021.169028.
@article{article, author = {Blagojevi\'{c}, An\djela and \v{S}u\v{s}ter\v{s}i\v{c}, Tijana and Lorencin, Ivan and Baressi \v{S}egota, Sandi and Milovanovi\'{c}, Dragan and Baski\'{c}, Danijela and Baski\'{c}, Dejan and Car, Zlatan and Filipovi\'{c}, Nenad}, year = {2021}, pages = {10}, DOI = {10.4108/eai.12-3-2021.169028}, chapter = {e6}, keywords = {COVID-19, machine learning, personalized model, U-net, classification, predictive models, finite element simulation}, journal = {EAI Endorsed Transactions on Bioengineering and Bioinformatics}, doi = {10.4108/eai.12-3-2021.169028}, volume = {21}, number = {2}, issn = {2709-4111}, title = {Combined machine learning and finite element simulation approach towards personalized model for prognosis of COVID-19 disease development in patients}, keyword = {COVID-19, machine learning, personalized model, U-net, classification, predictive models, finite element simulation}, chapternumber = {e6} }
@article{article, author = {Blagojevi\'{c}, An\djela and \v{S}u\v{s}ter\v{s}i\v{c}, Tijana and Lorencin, Ivan and Baressi \v{S}egota, Sandi and Milovanovi\'{c}, Dragan and Baski\'{c}, Danijela and Baski\'{c}, Dejan and Car, Zlatan and Filipovi\'{c}, Nenad}, year = {2021}, pages = {10}, DOI = {10.4108/eai.12-3-2021.169028}, chapter = {e6}, keywords = {COVID-19, machine learning, personalized model, U-net, classification, predictive models, finite element simulation}, journal = {EAI Endorsed Transactions on Bioengineering and Bioinformatics}, doi = {10.4108/eai.12-3-2021.169028}, volume = {21}, number = {2}, issn = {2709-4111}, title = {Combined machine learning and finite element simulation approach towards personalized model for prognosis of COVID-19 disease development in patients}, keyword = {COVID-19, machine learning, personalized model, U-net, classification, predictive models, finite element simulation}, chapternumber = {e6} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font