Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1115496

XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis


Hržić, Franko; Tschauner, Sebastian; Sorantin, Erich; Štajduhar, Ivan
XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis // Computers in biology and medicine, 132 (2021), 104300, 12 doi:10.1016/j.compbiomed.2021.104300 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1115496 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis

Autori
Hržić, Franko ; Tschauner, Sebastian ; Sorantin, Erich ; Štajduhar, Ivan

Izvornik
Computers in biology and medicine (0010-4825) 132 (2021); 104300, 12

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
X-ray image ; Image alignment and rotation ; Data preprocessing ; Deep CNN

Sažetak
Background and objectives Computer-aided diagnosis relies on machine learning algorithms that require filtered and preprocessed data as the input. Aligning the image in the desired direction is an additional manual step in post- processing, commonly overlooked due to workload issues. Several state-of-the-art approaches for fracture detection and disease-struck region segmentation benefit from correctly oriented images, thus requiring such preprocessing of X- ray images. Furthermore, it is desirable to have archived studies in a standardized format. Radiograph hanging protocols also differ from case to case, which means that images are not always aligned and oriented correctly. As a solution, the paper proposes XAOM, an X-ray Alignment and Orientation Method for images from 21 different body regions. Methods Typically, other methods are crafted for this purpose to suit a specific body region and form of usage. In contrast, the method proposed in this paper is comprehensive and easily tuned to align and orient X- ray images of any body region. XAOM consists of two stages. For the first stage of the method, aligning X-ray images, we experimented with the following approaches: Hough transform, Fast line detection algorithm, and Principal Component Analysis method. For the second stage, we have experimented with the adaptations of several well known convolutional neural network topologies for correctly predicting image orientation: LeNet5, AlexNet, VGG16, VGG19, and ResNet50. Results In the first stage, the PCA-based approach performed best. The average difference between the angle detected by the algorithm and the angle marked by the experts on the test set containing 200 pediatric X-ray images was 1.65°, while the median value was 0.11°. In the second stage, the VGG16-based network topology achieved the best accuracy of 0.993 on a test set containing 4, 221 images. Conclusion XAOM is highly accurate at aligning and orienting pediatric X-ray images of 21 common body regions according to a set standard. The proposed method is also robust and can be easily adjusted to the different alignment and rotation criteria. Availability The Python source code of the best performing implementation of XAOM is publicly available at https://github.com/fhrzic/XAOM.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Franko Hržić (autor)

Avatar Url Ivan Štajduhar (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Hržić, Franko; Tschauner, Sebastian; Sorantin, Erich; Štajduhar, Ivan
XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis // Computers in biology and medicine, 132 (2021), 104300, 12 doi:10.1016/j.compbiomed.2021.104300 (međunarodna recenzija, članak, znanstveni)
Hržić, F., Tschauner, S., Sorantin, E. & Štajduhar, I. (2021) XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis. Computers in biology and medicine, 132, 104300, 12 doi:10.1016/j.compbiomed.2021.104300.
@article{article, author = {Hr\v{z}i\'{c}, Franko and Tschauner, Sebastian and Sorantin, Erich and \v{S}tajduhar, Ivan}, year = {2021}, pages = {12}, DOI = {10.1016/j.compbiomed.2021.104300}, chapter = {104300}, keywords = {X-ray image, Image alignment and rotation, Data preprocessing, Deep CNN}, journal = {Computers in biology and medicine}, doi = {10.1016/j.compbiomed.2021.104300}, volume = {132}, issn = {0010-4825}, title = {XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis}, keyword = {X-ray image, Image alignment and rotation, Data preprocessing, Deep CNN}, chapternumber = {104300} }
@article{article, author = {Hr\v{z}i\'{c}, Franko and Tschauner, Sebastian and Sorantin, Erich and \v{S}tajduhar, Ivan}, year = {2021}, pages = {12}, DOI = {10.1016/j.compbiomed.2021.104300}, chapter = {104300}, keywords = {X-ray image, Image alignment and rotation, Data preprocessing, Deep CNN}, journal = {Computers in biology and medicine}, doi = {10.1016/j.compbiomed.2021.104300}, volume = {132}, issn = {0010-4825}, title = {XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis}, keyword = {X-ray image, Image alignment and rotation, Data preprocessing, Deep CNN}, chapternumber = {104300} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font