Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1115012

Evaluation of selected technologies for the implementation of meter data management system


Krivić, Petar; Guberović, Emanuel; Podnar Žarko, Ivana; Čavrak, Igor
Evaluation of selected technologies for the implementation of meter data management system // Proceedings of the 10th International Conference on the Internet of Things
Malmö, Švedska: The Association for Computing Machinery (ACM), 2020. str. 1-8 doi:10.1145/3410992.3410999 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1115012 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Evaluation of selected technologies for the implementation of meter data management system

Autori
Krivić, Petar ; Guberović, Emanuel ; Podnar Žarko, Ivana ; Čavrak, Igor

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 10th International Conference on the Internet of Things / - : The Association for Computing Machinery (ACM), 2020, 1-8

ISBN
978-1-4503-8758-3

Skup
10th International Conference on the Internet of Things (IoT2020)

Mjesto i datum
Malmö, Švedska, 05.10.2020. - 09.10.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Smart Metering, Kafka, InfluxDB, time-series data, MDM

Sažetak
Implementation of an efficient meter data management system presents a challenging task since it has to process and store a large number of incoming time-series data entries in almost real-time. A number of solutions for efficient processing and storage of big data streams are today available as open source or commercial software. However, the choice of the most applicable solution highly depends on the requirements of a specific use case scenario since the performance of the aforementioned solutions often vary depending on the specific use-case parameters (e.g. incoming data frequency, average size of a single data entry, etc.). Thus, in this paper we examine different platforms adequate for the implementation of a smart metering data acquisition system, to identify the most efficient ones among the considered candidates. The most important requirement of our meter data management system is to offer a stable solution that processes and stores high volumes of continuously incoming data readings with minimal loss-rate. For this purpose we propose a modular solution where components communicate over a message-queuing system, while the ultimate data repository is a NoSQL database. After carrying out all the specifically designed performance tests, we identify the following platforms as the most promising ones to implement our smart metering solution: Kafka as the messaging broker and time- series database InfluxDB. Finally, we verified that our MDMS successfully processes and stores 2.5 M data entries in a time period under eight minutes which confirms its targeted performance efficiency.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Krivić, Petar; Guberović, Emanuel; Podnar Žarko, Ivana; Čavrak, Igor
Evaluation of selected technologies for the implementation of meter data management system // Proceedings of the 10th International Conference on the Internet of Things
Malmö, Švedska: The Association for Computing Machinery (ACM), 2020. str. 1-8 doi:10.1145/3410992.3410999 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Krivić, P., Guberović, E., Podnar Žarko, I. & Čavrak, I. (2020) Evaluation of selected technologies for the implementation of meter data management system. U: Proceedings of the 10th International Conference on the Internet of Things doi:10.1145/3410992.3410999.
@article{article, author = {Krivi\'{c}, Petar and Guberovi\'{c}, Emanuel and Podnar \v{Z}arko, Ivana and \v{C}avrak, Igor}, year = {2020}, pages = {1-8}, DOI = {10.1145/3410992.3410999}, keywords = {Smart Metering, Kafka, InfluxDB, time-series data, MDM}, doi = {10.1145/3410992.3410999}, isbn = {978-1-4503-8758-3}, title = {Evaluation of selected technologies for the implementation of meter data management system}, keyword = {Smart Metering, Kafka, InfluxDB, time-series data, MDM}, publisher = {The Association for Computing Machinery (ACM)}, publisherplace = {Malm\"{o}, \v{S}vedska} }
@article{article, author = {Krivi\'{c}, Petar and Guberovi\'{c}, Emanuel and Podnar \v{Z}arko, Ivana and \v{C}avrak, Igor}, year = {2020}, pages = {1-8}, DOI = {10.1145/3410992.3410999}, keywords = {Smart Metering, Kafka, InfluxDB, time-series data, MDM}, doi = {10.1145/3410992.3410999}, isbn = {978-1-4503-8758-3}, title = {Evaluation of selected technologies for the implementation of meter data management system}, keyword = {Smart Metering, Kafka, InfluxDB, time-series data, MDM}, publisher = {The Association for Computing Machinery (ACM)}, publisherplace = {Malm\"{o}, \v{S}vedska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font